×

Teleman localization of Hochschild homology in a singular setting. (English) Zbl 1184.55002

Generalizations of the Hochschild-Kostant-Rosenberg theorem to singular spaces are considered.
In particular, given a singular variety \(X\) with isolated singularities, the authors define a smooth intersection function algebra \(IC^\infty(X)\). This is defined as an algebra of smooth functions on the regular part of \(X\) which satisfy certain growth conditions near the singularities. The main theorem of the paper states that that the closed Hochschild homology of this algebra with coefficients in a suitable module (depending on a parameter \(\delta\)) is isomorphic to a certain “intersection” complex of differential forms, and the cohomology of the latter is the intersection cohomology of \(X\) (with perversity determined by \(\delta\)).
Closed Hochschild homology here means that one divides the space of Hochschild cycles by the closure of the space of Hochschild boundaries. Another often used terminology for this construction is reduced cohomology.
The identification of Hochschild homology with a suitable complex of differential forms is called “Teleman localization” in the paper. In addition to the above localization result, the paper also shows that such localization results hold for suitable algebras of functions on a manifold with boundary.

MSC:

55N33 Intersection homology and cohomology in algebraic topology
19D55 \(K\)-theory and homology; cyclic homology and cohomology
Full Text: DOI

References:

[1] J.-P. Brasselet, Homologie d’intersection: point de vue combinatoire, Publication École Polytechnique (1985).
[2] J.-P. Brasselet and A. Legrand, ”Un complexe de formes différentielles à croissance bornée sur une variété stratifiée,” Ann. Sc. Norm. Super. Pisa, Serie IV XXI(2), 213–234 (1994).
[3] J.-P. Brasselet and A. Legrand, ”Differential Forms on Singular Varieties and Cyclic Homology,” in Singularity Theory (Liverpool, 1996), London Math. Soc. Lecture Note Ser. 263 (Cambridge Univ. Press, Cambridge, 1999), pp. xviii, 175–187. · Zbl 0949.55003
[4] J.-P. Brasselet, A. Legrand, and N. Teleman, ”Hochschild Homology of Singular Algebras,” K-Theory 29(3), 1–25 (2003). · Zbl 1045.58004 · doi:10.1023/B:KTHE.0000003921.23339.68
[5] J.-L. Brylinski and V. Nistor, ”Cyclic Cohomology of Etale Groupoïds,” K-Theory 8, 341–365 (1994). · Zbl 0812.19003 · doi:10.1007/BF00961407
[6] J. Brodzki, M.-T. Benameur, and V. Nistor, ”Cyclic Homology and Pseudodifferential Operators,” a survey. · Zbl 1070.57015
[7] A. Connes, ”Noncommutative Differential Geometry,” Inst. Hautes Études Sci. Publ. Math. 62, 257–360 (1985). · Zbl 0592.46056 · doi:10.1007/BF02698807
[8] A. Connes, Noncommutative Geometry (Academic Press, San Diego, 1994).
[9] J. Cuntz, ”Cycle Homology and Nonsingularity,” J. AMS 8(2), 373–442 (1995). · Zbl 0838.19002
[10] J. M. Gracia-Bondía, J.C. Várilly, and H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser Advanced Texts (2001).
[11] M. Goresky and R. MacPherson, ”Intersection Homology Theory,” Topology 19, 135–162 (1980). · Zbl 0448.55004 · doi:10.1016/0040-9383(80)90003-8
[12] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). · Zbl 0064.35501
[13] G. Hochschild, B. Kostant, and A. Rosenberg, ”Differential Forms on Regular Affine Algebras,” Trans. Amer. Math. Soc. 102, 383–408 (1962). · Zbl 0102.27701 · doi:10.1090/S0002-9947-1962-0142598-8
[14] J.-L. Loday, Cyclic Homology (Springer, Berlin, 1992).
[15] B. Malgrange, Ideals of Differentiable Functions (Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967). · Zbl 0177.17902
[16] R. Melrose and V. Nistor, ”Homology of Pseudodifferential Operators, I. Manifolds with Boundary,” Preprint MIT (1996).
[17] D. Sullivan, ”Differential Forms and the Topology of Manifolds,” in: Manifolds-Tokyo 1973 (University of Tokyo, 1975), pp. 37–49.
[18] N. Teleman, ”Microlocalization de l’homologie de Hochschild,” C. R. Acad. Sci. Paris Sér. I Math. 326(11), 1261–1264 (1998). · Zbl 0931.58015 · doi:10.1016/S0764-4442(98)80175-4
[19] N. Teleman, ”Localization of Hochschild Homology,” publication no. 3 in http://dipmat.unian.it/rtn/publications.html , (2000). · Zbl 1079.58016
[20] L. Schwartz, ”Espaces de fonctions différentiables à valeurs vectorielles,” J. Anal. Math. 4, 88–148 (1954/55). · Zbl 0066.09601 · doi:10.1007/BF02787718
[21] H. Whitney, ”Analytic Extension of Differentiable Functions Defined in Closed Sets,” Trans. Amer. Math. Soc. 36, 63–89 (1934). · Zbl 0008.24902 · doi:10.1090/S0002-9947-1934-1501735-3
[22] H. Whitney, Geometric Integration Theory (Princeton University Press, Princeton, 1957). · Zbl 0083.28204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.