Skip to main content
Log in

Teleman localization of Hochschild homology in a singular setting

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to generalize the Hochschild-Kostant-Rosenberg theorem to the case of singular varieties, more precisely, to manifolds with boundary and to varieties with isolated singularities. In these situations, we define suitable algebras of functions and study the localization of the corresponding Hochschild homology. The tool we use is the Teleman localization process. In the case of isolated singularities, the closed Hochschild homology corresponds to the intersection complex which relates the objects defined here to intersection homology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Brasselet, Homologie d’intersection: point de vue combinatoire, Publication École Polytechnique (1985).

  2. J.-P. Brasselet and A. Legrand, “Un complexe de formes différentielles à croissance bornée sur une variété stratifiée,” Ann. Sc. Norm. Super. Pisa, Serie IV XXI(2), 213–234 (1994).

    MathSciNet  Google Scholar 

  3. J.-P. Brasselet and A. Legrand, “Differential Forms on Singular Varieties and Cyclic Homology,” in Singularity Theory (Liverpool, 1996), London Math. Soc. Lecture Note Ser. 263 (Cambridge Univ. Press, Cambridge, 1999), pp. xviii, 175–187.

    Google Scholar 

  4. J.-P. Brasselet, A. Legrand, and N. Teleman, “Hochschild Homology of Singular Algebras,” K-Theory 29(3), 1–25 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. J.-L. Brylinski and V. Nistor, “Cyclic Cohomology of Etale Groupoïds,” K-Theory 8, 341–365 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Brodzki, M.-T. Benameur, and V. Nistor, “Cyclic Homology and Pseudodifferential Operators,” a survey.

  7. A. Connes, “Noncommutative Differential Geometry,” Inst. Hautes Études Sci. Publ. Math. 62, 257–360 (1985).

    Article  MathSciNet  Google Scholar 

  8. A. Connes, Noncommutative Geometry (Academic Press, San Diego, 1994).

    MATH  Google Scholar 

  9. J. Cuntz, “Cycle Homology and Nonsingularity,” J. AMS 8(2), 373–442 (1995).

    MATH  MathSciNet  Google Scholar 

  10. J. M. Gracia-Bondía, J.C. Várilly, and H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser Advanced Texts (2001).

  11. M. Goresky and R. MacPherson, “Intersection Homology Theory,” Topology 19, 135–162 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).

  13. G. Hochschild, B. Kostant, and A. Rosenberg, “Differential Forms on Regular Affine Algebras,” Trans. Amer. Math. Soc. 102, 383–408 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  14. J.-L. Loday, Cyclic Homology (Springer, Berlin, 1992).

    MATH  Google Scholar 

  15. B. Malgrange, Ideals of Differentiable Functions (Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967).

    Google Scholar 

  16. R. Melrose and V. Nistor, “Homology of Pseudodifferential Operators, I. Manifolds with Boundary,” Preprint MIT (1996).

  17. D. Sullivan, “Differential Forms and the Topology of Manifolds,” in: Manifolds-Tokyo 1973 (University of Tokyo, 1975), pp. 37–49.

  18. N. Teleman, “Microlocalization de l’homologie de Hochschild,” C. R. Acad. Sci. Paris Sér. I Math. 326(11), 1261–1264 (1998).

    MATH  ADS  MathSciNet  Google Scholar 

  19. N. Teleman, “Localization of Hochschild Homology,” publication no. 3 in http://dipmat.unian.it/rtn/publications.html, (2000).

  20. L. Schwartz, “Espaces de fonctions différentiables à valeurs vectorielles,” J. Anal. Math. 4, 88–148 (1954/55).

    Article  Google Scholar 

  21. H. Whitney, “Analytic Extension of Differentiable Functions Defined in Closed Sets,” Trans. Amer. Math. Soc. 36, 63–89 (1934).

    Article  MathSciNet  Google Scholar 

  22. H. Whitney, Geometric Integration Theory (Princeton University Press, Princeton, 1957).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -P. Brasselet.

Additional information

To Nicolae for his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brasselet, J.P., Legrand, A. Teleman localization of Hochschild homology in a singular setting. Russ. J. Math. Phys. 16, 391–403 (2009). https://doi.org/10.1134/S1061920809030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920809030078

Keywords

Navigation