×

Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces. (English) Zbl 1151.35048

In this paper the Cauchy problem for the semilinear fractional power dissipative equation \[ \begin{cases} u_t + (-\Delta)^\alpha u = F(u), & (t,x)\in \mathbb{R}^+ \times \mathbb{R}^n, \\ u(0,x)=u_0(x), & x\in\mathbb{R}^n, \end{cases} \] is studied, where \(\alpha>0\), \(b\in\mathbb{N}\), \(F(u)=P(D)u^{b+1}\) and \(P(D)\) is a homogeneous pseudo-differential operator of order \(d \in [0,2\alpha)\), and the initial data \(u_0\) belongs to the homogeneous Besov space \(\dot{B}^\sigma_{2,r}\) in the (critical) case \(\sigma=\frac{n}{2}-\frac{2\alpha-d}{b} > -\frac{n}{2}\), \(1\leq r\leq\infty\). The main result about the uniqueness and regularity of the solution is Theorem 1.1, complemented by the blow-up criterion Theorem 1.2. Proofs are presented in Section 4, preceded by estimates for the corresponding linear equation in the frame of mixed time-space setting, considered in Section 3. Furthermore, in addition to Fourier localization techniques and Littlewood-Paley assertions, a so-called “mono-norm method” is applied which differs from Kato’s “double-norm method” which was used in [C. Miao, B. Yuan, B. Zhang, Nonlinear Anal., Theory Methods Appl. 68, No. 3 (A), 461–484 (2008; Zbl 1132.35047)] for related assertions of well-posedness in Lebesgue spaces.

MSC:

35K55 Nonlinear parabolic equations
35K15 Initial value problems for second-order parabolic equations

Citations:

Zbl 1132.35047
Full Text: DOI

References:

[1] Bergh, J.; Löfstrom, J., Interpolation Spaces, an Introdution (1976), Springer-Verlag: Springer-Verlag New York · Zbl 0344.46071
[2] Cannone, M.; Karch, G., About the regularized Navier-Stokes equations, J. Math. Fluid Mech., 7, 1-28 (2005) · Zbl 1096.35099
[3] Chae, D., The quasi-geostrophic equation in the Triebel-Lizork spaces, Nonlinearity, 16, 479-495 (2003) · Zbl 1029.35006
[4] Chemin, J. Y., Perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl., vol. 14 (1998), The Clarendon Press/Oxford University Press: The Clarendon Press/Oxford University Press New York · Zbl 0927.76002
[5] Chen, Q. L.; Miao, C.; Zhang, Z. F., A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 271, 821-838 (2007) · Zbl 1142.35069
[6] Fujita, H., On the blowing up of solutions of the Cauchy problem for \(u_t = \Delta u + u^{1 + \alpha}\), J. Fac. Sci. Univ. Tokyo Sect. I, 13, 109-124 (1966) · Zbl 0163.34002
[7] Giga, Y., Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 61, 186-212 (1986) · Zbl 0577.35058
[8] Hayashi, N.; Naumkin, E. I.; Shishmarev, I. A., Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Math., vol. 1884 (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1130.35001
[9] Hierber, M.; Prüss, J., Heat kernels and maximal \(L^p - L^q\) estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22, 1647-1669 (1997) · Zbl 0886.35030
[10] Karch, G., Scaling in nonlinear parabolic equations, J. Math. Anal. Appl., 234, 534-558 (1999) · Zbl 0937.35086
[11] G. Karch, Scaling in nonlinear parabolic equations: Applications to Debye system, in: Proc. Conf. on Disordered and Complex Systems, American Institute of Physics Publishing, London, 10-14 July 2000; G. Karch, Scaling in nonlinear parabolic equations: Applications to Debye system, in: Proc. Conf. on Disordered and Complex Systems, American Institute of Physics Publishing, London, 10-14 July 2000
[12] G. Karch, C. Miao, X. Xu, On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal., in press; G. Karch, C. Miao, X. Xu, On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal., in press · Zbl 1154.35080
[13] Kochubei, A. N., Parabolic pseudo-differential equations, hypersingular integrals, and Markov processes, Izv. AN SSSR Ser. Mat.. Izv. AN SSSR Ser. Mat., Math. USSR Izv., 33, 2, 233-259 (1989), (in Russian); English translation: · Zbl 0682.35113
[14] Li, T.; Chen, Y., Initial value problems for nonlinear heat equations, J. Partial Differential Equations, 1, 1-11 (1988) · Zbl 0671.35036
[15] Miao, C., Harmonic Analysis with Application to Partial Differential Equations (2004), Science Press: Science Press Beijing
[16] Miao, C., Time-space estimates of solutions to general semilinear parabolic equations, Tokyo J. Math., 24, 245-276 (2001) · Zbl 1106.35027
[17] Miao, C.; Gu, Y., Space-time estimates for parabolic type operator and application to nonlinear parabolic equations, J. Partial Differential Equations, 11, 301-312 (1998) · Zbl 0918.35063
[18] Miao, C.; Yang, H., The self-similar solution to some nonlinear integro-differential equations corresponding to fractional order time derivative, Acta. Math. Sinica, 21, 1337-1350 (2005) · Zbl 1111.45008
[19] C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equation, Nonlinear Anal. (2006), doi:10.1016/j.na.2006.11.011; C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equation, Nonlinear Anal. (2006), doi:10.1016/j.na.2006.11.011
[20] Miao, C.; Yuan, B., Solutions to some nonlinear parabolic equations in pseudomeasure spaces, Math. Nachr., 280, 171-186 (2007) · Zbl 1110.35024
[21] Miao, C.; Zhang, B., The Cauchy problem for semilinear parabolic equations in Besov spaces, Houston J. Math., 30, 829-878 (2004) · Zbl 1056.35078
[22] Ponce, G., Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9, 399-418 (1985) · Zbl 0576.35023
[23] Ribaud, F., Semilinear parabolic equation with distributions as initial data, Discrete Contin. Dyn. Syst., 3, 305-316 (1997) · Zbl 0949.35065
[24] Ribaud, F., Cauchy problem for semilinear parabolic equations with initial data in \(H_p^s(R^n)\) spaces, Rev. Mat. Iberoamericana, 14, 1-46 (1998) · Zbl 0910.35065
[25] Runst, T.; Sickel, W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl., vol. 3 (1996), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 0873.35001
[26] Terraneo, E., Non-uniqueness for a critical nonlinear heat equation, Comm. Partial Differential Equations, 27, 185-218 (2002) · Zbl 1006.35045
[27] Weissler, F. B., Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38, 29-40 (1981) · Zbl 0476.35043
[28] Wu, J.-H., Dissipative quasi-geostrophic equations with \(L^p\) data, Electron. J. Differential Equations, 2001, 1-13 (2001) · Zbl 0987.35127
[29] Wu, J.-H., Quasi-geostrophic type equations with weak initial data, Electron. J. Differential Equations, 1998, 1-10 (1998) · Zbl 0898.35077
[30] Wu, J.-H., Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal., 36, 1014-1030 (2005) · Zbl 1083.76064
[31] Wu, J.-H., Solutions of the 2D quasi-geostrophic equation in Hölder spaces, Nonlinear Anal., 62, 579-594 (2005) · Zbl 1116.35348
[32] Wu, J.-H., Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Comm. Math. Phys., 263, 803-831 (2006) · Zbl 1104.35037
[33] Zhang, Z., Well-posedness for the 2D dissipative quasi-geostrophic equations in the Besov space, Sci. China, 48, 1646-1655 (2005) · Zbl 1217.35148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.