×

Microstructural evolution in polymer blends. (English) Zbl 1047.76503

Annu. Rev. Fluid Mech. 34, 177-210 (2002).
Summary: Microstructure in an immiscible polymer blend consists of the size, shape, and orientation of the phases. Blends exhibit many interesting behaviors, including enhanced elasticity at small strains, drop-size hysteresis, enhanced shear thinning, and stress relaxation curves whose shapes are sensitive to deformation history. These behaviors are directly related to changes in the microstructure, which result from phase deformation, coalescence, retraction, and different types of breakup. These phenomena are reviewed, together with models that describe them. Rheological measurements can probe the microstructure because microstructure contributes directly to stress through interfacial tension. Rheo-optical experiments also provide important insights. Droplet theories explain most of the phenomena for Newtonian phases at low concentrations. Behaviors at high volume fractions or with strongly non-Newtonian phases are less well understood.
For the entire collection see [Zbl 0982.00031].

MSC:

76A10 Viscoelastic fluids
82D60 Statistical mechanics of polymers
Full Text: DOI