×

Stability, bifurcation and chaos of a delayed oscillator with negative damping and delayed feedback control. (English) Zbl 1181.70020

Summary: This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results indicate that delayed feedback control can make systems with state delay produce more complicated dynamics.

MSC:

70K20 Stability for nonlinear problems in mechanics
70K50 Bifurcations and instability for nonlinear problems in mechanics
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
70Q05 Control of mechanical systems

Software:

XPPAUT
Full Text: DOI

References:

[1] Hu, H. Y.; Wang, Z. H., Dynamics of Controlled Mechanical Systems with Delayed Feedback (2002), Heidelberg: Springer-Verlag, Heidelberg · Zbl 1035.93002
[2] Reddy, D. V.R.; Sen, A.; Johnston, G. L., Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks, Physica D, 144, 335-357 (2000) · Zbl 0973.34061 · doi:10.1016/S0167-2789(00)00086-5
[3] Lu, S. P.; Ge, W. G., Existence of positive periodic solutions for neutral population model with multiple delays, J. Comput. Appl. Math., 166, 371-383 (2004) · Zbl 1061.34053 · doi:10.1016/j.cam.2003.08.033
[4] Shayer, L. P.; Campbell, S. A., Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays, Soc. Ind. Appl. Math., 61, 673-700 (2000) · Zbl 0992.92013 · doi:10.1137/S0036139998344015
[5] Hale, J. K., Theory of Functional Differential Equations (1977), New York: Springer-Verlag, New York · Zbl 0352.34001
[6] Diekmann, O., Delay Equations, Functional-, Complex-, and Nonlinear Analysis (1995), New York: Springer, New York · Zbl 0826.34002
[7] Stepan, G., Retarded Dynamical Systems: Stability and Characteristic Functions (1989), Essex: Longman Scientific and Technical, Essex · Zbl 0686.34044
[8] Kuang, Y., Delay Differential Equations with Applications to Population Dynamics (1993), New York: Academic Press, New York · Zbl 0777.34002
[9] Qin, Y. X., Stability of Dynamic Systems with Delays (1989), Beijing: Science Press, Beijing
[10] Campbell, S. A., Stability and bifurcation of a simple neural network with multiple time delays, Fields Inst. Commun., 21, 65-79 (1999) · Zbl 0926.92003
[11] Sipahi, R.; Olgac, N., Complete stability robustness of third-order LTI multiple time-delay systems, Automatica, 41, 1413-1422 (2005) · Zbl 1086.93049 · doi:10.1016/j.automatica.2005.03.022
[12] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-428 (1992) · doi:10.1016/0375-9601(92)90745-8
[13] Hu, H. Y., Using delayed state feedback to stabilize periodic motions of an oscillator, J. Sound Vibrat., 275, 1009-1025 (2004) · Zbl 1236.93124 · doi:10.1016/j.jsv.2003.07.006
[14] Xu, J.; Chung, K. W., Effects of time delayed position feedback on a van der Pol-Duffing oscillator, Physica D, 180, 17-39 (2003) · Zbl 1024.37028 · doi:10.1016/S0167-2789(03)00049-6
[15] Liao, X. F.; Chen, G. R., Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays, Int. J. Bifurcat. Chaos, 11, 2105-2121 (2001) · Zbl 1091.70502 · doi:10.1142/S0218127401003425
[16] Moiola, J. L.; Chiacchiarini, H. G.; Ddeages, A. C., Bifurcation and Hopf degeneracies in nonlinear feedback systems with the time-delay, Int. J. Bifurcat. Chaos, 6, 661-672 (1996) · Zbl 0875.93183 · doi:10.1142/S0218127496000333
[17] Wei, J. J.; Jiang, W. H., Stability and bifurcation analysis in Van der Pol’s oscillator with delayed feedback, J. Sound Vibrat., 283, 801-809 (2005) · Zbl 1237.70091 · doi:10.1016/j.jsv.2004.05.014
[18] Kakmeni, F. M.M.; Bowong, S.; Tchawoua, C., Chaos control and synchronization of a Phi(6)-van der Pol oscillator, Phys. Lett. A, 322, 305-323 (2004) · Zbl 1118.81375 · doi:10.1016/j.physleta.2004.01.016
[19] De Oliveira, J. C.F., Oscillations in a van der Pol equation with delayed argument, J. Math. Anal. Appl., 275, 789-803 (2002) · Zbl 1022.34067 · doi:10.1016/S0022-247X(02)00422-5
[20] Atay, F. M., Van der Pol’s oscillator under delayed feedback, J. Sound Vibrat., 218, 333-339 (1998) · Zbl 1235.70142 · doi:10.1006/jsvi.1998.1843
[21] Tian, Y. P.; Yu, X. H.; Chua, L. O., Time-delayed impulsive control of chaotic hybrid systems, Int. J. Bifurcat. Chaos, 14, 1091-1104 (2004) · Zbl 1129.93515 · doi:10.1142/S0218127404009612
[22] Atay, F. M., Delayed-feedback control of oscillations in nonlinear planar systems, Int. J. Control, 75, 297-304 (2002) · Zbl 1009.93038 · doi:10.1080/00207170110107265
[23] Campbell, S. A.; Belair, J.; Ohira, T., Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback, Chaos, 5, 640-645 (1995) · Zbl 1055.34511 · doi:10.1063/1.166134
[24] Minorsky, N., Nonlinear Oscillations (1962), Princeton, NJ: D. Van Nostrand Company, Inc., Princeton, NJ · Zbl 0102.30402
[25] Yoshitake, Y.; Inoue, J.; Sueoka, A., Vibration of a forced self-excited system with time delay, Trans. JSME Ser. C, 49, 298-305 (1984)
[26] Xu, J.; Lu, Q. S., Hopf bifurcation of time-delay lienard equations, Int. J. Bifurcat. Chaos, 9, 939-951 (1999) · Zbl 1089.34545 · doi:10.1142/S0218127499000675
[27] Wang, Z. H.; Hu, H. Y., An energy analysis of the local dynamics of a delayed oscillator near a hopf bifurcation, Nonlinear Dyn., 46, 149-159 (2006) · Zbl 1170.70362
[28] Das, S. L.; Chatterjee, A., Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations, Nonlinear Dyn., 30, 323-335 (2002) · Zbl 1038.34075 · doi:10.1023/A:1021220117746
[29] Raghothama, A.; Narayanan, S., Periodic response and chaos in nonlinear systems with parametric excitation and time delay, Nonlinear Dyn., 27, 341-365 (2003) · Zbl 1065.34082 · doi:10.1023/A:1015207726565
[30] Plaut, R. H.; Hsieh, J. C., Chaos in a mechanism with time delays under parametric and external excitation, J. Sound Vibrat., 114, 73-90 (1987) · Zbl 1235.70098
[31] Rabotnov, Y. N., Creep Problems in Structural Members (1966), London: North-Holland Publishing Company-Amsterdam, London
[32] Rabotnov, Y. N., Elements of Hereditary Solid Mechanics (1980), Moscow: MIR Publishers, Moscow · Zbl 0515.73026
[33] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979), New York: John Wiley & Sons, New York · Zbl 0418.70001
[34] Stepan, G., Szabo, Z.: Impact induced internal fatigue cracks. In: Proceedings ASME DETC 17th Biennial Conference on Mechanical Vibration and Noise, Las Vegas, DETC99/VIB-8351, pp. 1-7 (1999)
[35] Rocard, Y., General Dynamics of Vibrations (1960), London: Crosby Lichwood & Son Ltd., London
[36] Kalmar-Nagy, T.; Stepan, G.; Moon, F. C., Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations, Nonlinear Dyn., 26, 121-142 (2001) · Zbl 1005.70019 · doi:10.1023/A:1012990608060
[37] Leine, R. I.; van Campen, D. H.; van de Vrande, B. L., Bifurcations in nonlinear discontinuous systems, Nonlinear Dyn., 23, 105-164 (2000) · Zbl 0980.70018 · doi:10.1023/A:1008384928636
[38] Stepan, G., Kalmar-Nagy, T.: Nonlinear regenerative machine tool vibration. In: Proceedings ASME DETC 17th Biennial Conference on Mechanical Vibration and Noise, Sacramento, DETC97/VIB-4021, pp. 1-11 (1997)
[39] Cooke, K. L.; Grossman, Z., Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86, 592-627 (1982) · Zbl 0492.34064 · doi:10.1016/0022-247X(82)90243-8
[40] Wang, Z. H.; Hu, H. Y., Stability switches of time-delayed dynamic systems with unknown parameters, J. Sound Vibrat., 233, 215-233 (2000) · Zbl 1237.93159 · doi:10.1006/jsvi.1999.2817
[41] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Applications of Hopf Bifurcation (1981), Cambridge: Cambridge University Press, Cambridge · Zbl 0474.34002
[42] Ermentrout, B., XPPAUT 3.0—The Differential Equations Tool (1997), Pittsburgh: University of Pittsburgh, Pittsburgh
[43] Wahi, P.; Chatterjee, A., Regenerative tool chatter near a codimension 2 Hopf point using multiple scales, Nonlinear Dyn., 40, 323-338 (2005) · Zbl 1172.70309 · doi:10.1007/s11071-005-7292-9
[44] Stepan, G.; Haller, G., Quasiperiodic oscillations in robot dynamics, Nonlinear Dyn., 8, 513-528 (1995)
[45] Wang, H. L.; Hu, H. Y.; Wang, Z. H., Global dynamics of a Duffing oscillator with delayed displacement feedback, Int. J. Bifurcat. Chaos, 14, 2753-2775 (2004) · Zbl 1075.34077 · doi:10.1142/S0218127404010990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.