×

Well-posedness and weak rotation limit for the Ostrovsky equation. (English) Zbl 1181.35253

Summary: We consider the Cauchy problem of the Ostrovsky equation. We first prove the time local well-posedness in the anisotropic Sobolev space \(H^{s,a}\) with \(s> - a/2 - 3/4\) and \(0\leqslant a\leqslant - 1\) by the Fourier restriction norm method. This result include the time local well-posedness in \(H^s\) with \(s> - 3/4\) for both positive and negative dissipation, namely for both \(\beta \gamma >0\) and \(\beta \gamma <0\). We next consider the weak rotation limit. We prove that the solution of the Ostrovsky equation converges to the solution of the KdV equation when the rotation parameter \(\gamma \) goes to 0 and the initial data of the KdV equation is in \(L^{2}\). To show this result, we prove a bilinear estimate which is uniform with respect to \(\gamma \).

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Benilov, E. S., On the surface waves in a shallow channel with an uneven bottom, Stud. Appl. Math., 87, 1, 1-14 (1992) · Zbl 0749.76007
[2] Bona, J. L.; Smith, R., The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond. Ser. A, 278, 1287, 555-601 (1975) · Zbl 0306.35027
[3] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3, 3, 209-262 (1993) · Zbl 0787.35098
[4] Bourgain, J., Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.), 3, 2, 115-159 (1997) · Zbl 0891.35138
[5] Chen, Guan-yu; Boyd, John P., Analytical and numerical studies of weakly nonlocal solitary waves of the rotation-modified Korteweg-de Vries equation, Phys. D, 155, 3-4, 201-222 (2001) · Zbl 0985.35077
[6] Christ, M.; Colliander, J.; Tao, T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocussing equations, Amer. J. Math., 125, 6, 1235-1293 (2003) · Zbl 1048.35101
[7] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc., 16, 3, 705-749 (2003) · Zbl 1025.35025
[8] Galkin, V. M.; Stepanyants, Yu. A., On the existence of stationary solitary waves in a rotating fluid, Prikl. Mat. Mekh., 55, 6, 1051-1055 (1991) · Zbl 0786.76016
[9] Gilman, O. A.; Grimshaw, R.; Stepanyants, Yu. A., Approximate analytical and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math., 95, 1, 115-126 (1995) · Zbl 0843.76008
[10] Ginibre, J.; Tsutsumi, Y.; Velo, G., Existence and uniqueness of solutions for the generalized Korteweg de Vries equation, Math. Z., 203, 1, 9-36 (1990) · Zbl 0662.35114
[11] Ginibre, J.; Tsutsumi, Y.; Velo, G., On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151, 2, 384-436 (1997) · Zbl 0894.35108
[12] Gui, G.; Liu, Y., On the Cauchy problem for the Ostrovsky equation with positive dispersion, Comm. Partial Differential Equations, 32, 12, 1895-1916 (2007) · Zbl 1132.35077
[13] Huo, Z.; Jia, Y., Low-regularity solutions for the Ostrovsky equation, Proc. Edinb. Math. Soc. (2), 49, 1, 87-100 (2006) · Zbl 1103.35004
[14] Isaza, P.; Mejia, J., Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Differential Equations, 230, 2, 661-681 (2006) · Zbl 1110.35075
[15] Isaza, P.; Mejia, J., Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal., 67, 1482-1503 (2007) · Zbl 1120.35079
[16] Ishimura, N.; Mizumachi, T., On the existence of periodic traveling wave solutions for the Ostrovsky equation, Proc. Czech-Japanese Seminar Appl. Math., 33-37 (2005)
[17] Kato, T., The Cauchy problem for the Korteweg-de Vries equation, (Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, vol. I. Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, vol. I, Paris, 1978/1979. Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, vol. I. Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, vol. I, Paris, 1978/1979, Res. Notes Math., vol. 53 (1981), Pitman: Pitman Boston, MA/London), 293-307 · Zbl 0542.35064
[18] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, 4, 527-620 (1993) · Zbl 0808.35128
[19] Kenig, C. E.; Ponce, G.; Vega, L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9, 2, 573-603 (1996) · Zbl 0848.35114
[20] Kenig, C. E.; Ponce, G.; Vega, L., On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106, 3, 617-633 (2001) · Zbl 1034.35145
[21] Levandosky, S.; Liu, Y., Stability of solitary waves of a generalized Ostrovsky equation, SIAM J. Math. Anal., 38, 3, 985-1011 (2006) · Zbl 1123.35056
[22] Levandosky, S.; Liu, Y., Stability and weak rotation limit of solitary waves of the Ostrovsky equation, Discrete Contin. Dyn. Syst. Ser. B, 7, 4, 793-806 (2007) · Zbl 1129.35453
[23] Linares, F.; Milanés, A., Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222, 2, 325-340 (2006) · Zbl 1089.35061
[24] Liu, Y.; Ohta, M., Stability of solitary waves for the Ostrovsky equation, Proc. Amer. Math. Soc., 136, 2, 511-517 (2008) · Zbl 1132.35011
[25] Liu, Y.; Varlamov, V., Stability of solitary waves and weak rotation limit for the Ostrovsky equation, J. Differential Equations, 203, 1, 159-183 (2004) · Zbl 1064.35148
[26] Liu, Y., On the stability of solitary waves for the Ostrovsky equation, Quart. Appl. Math., 65, 3, 571-589 (2007) · Zbl 1144.35460
[27] Y. Liu, P. Zhang, Symmetry and uniqueness of the solitary-wave solution for the ostrovsky equation, Arch. Ration. Mech. Anal. (2009), Digital Object Identifier doi:10.1007/s00205-009-0256-3; Y. Liu, P. Zhang, Symmetry and uniqueness of the solitary-wave solution for the ostrovsky equation, Arch. Ration. Mech. Anal. (2009), Digital Object Identifier doi:10.1007/s00205-009-0256-3 · Zbl 1193.35173
[28] Nakanishi, K.; Takaoka, H.; Tsutsumi, Y., Counterexamples to bilinear estimates related with the KdV equation and the nonlinear Schrödinger equation, IMS Conference on Differential Equations from Mechanics. IMS Conference on Differential Equations from Mechanics, Hong Kong, 1999. IMS Conference on Differential Equations from Mechanics. IMS Conference on Differential Equations from Mechanics, Hong Kong, 1999, Methods Appl. Anal., 8, 4, 569-578 (2001) · Zbl 1011.35119
[29] Ostrovsky, L. A., Nonlinear internal waves in a rotating ocean, Okeanologia, 18, 181-191 (1978)
[30] Ostrovsky, L. A.; Stepanyants, Yu. A., Nonlinear surface and internal waves in rotating fluids, (Research Reports in Physics, Nonlinear Waves 3 (1990), Springer-Verlag: Springer-Verlag Berlin/Heidelberg), 106-128 · Zbl 0719.76021
[31] Tzvetkov, N., Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris Ser. I Math., 329, 12, 1043-1047 (1999) · Zbl 0941.35097
[32] Varlamov, V.; Liu, Y., Cauchy problem for the Ostrovsky equation, Discrete Contin. Dyn. Syst., 10, 3, 731-753 (2004) · Zbl 1059.35035
[33] Wang, H.; Cui, S., Well-posedness of the Cauchy problem of Ostrovsky equation in anisotropic Sobolev spaces, J. Math. Anal. Appl., 327, 1, 88-100 (2007) · Zbl 1116.35047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.