×

On the stability of solitary waves for the Ostrovsky equation. (English) Zbl 1144.35460

Summary: Considered herein is the stability of solitary-wave solutions of the Ostrovsky equation which is an adaptation of the Korteweg-de Vries equation widely used to describe the effect of rotation on the surface and internal solitary waves or the capillary waves. It is shown that the ground state solitary waves are global minimizers of energy functionals with the constrained variational problem and are deduced to be nonlinearly stable for the small effect of rotation. The analysis makes frequent use of the variational properties of the ground states.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B35 Stability in context of PDEs
35B60 Continuation and prolongation of solutions to PDEs
76B25 Solitary waves for incompressible inviscid fluids
76E07 Rotation in hydrodynamic stability
76M30 Variational methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Eugene S. Benilov, On the surface waves in a shallow channel with an uneven bottom, Stud. Appl. Math. 87 (1992), no. 1, 1 – 14. · Zbl 0749.76007 · doi:10.1002/sapm19928711
[2] Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486 – 490. · Zbl 0526.46037
[3] Anne de Bouard and Jean-Claude Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 2, 211 – 236 (English, with English and French summaries). · Zbl 0883.35103 · doi:10.1016/S0294-1449(97)80145-X
[4] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), no. 4, 549 – 561. · Zbl 0513.35007
[5] Jürg Fröhlich, Elliott H. Lieb, and Michael Loss, Stability of Coulomb systems with magnetic fields. I. The one-electron atom, Comm. Math. Phys. 104 (1986), no. 2, 251 – 270. Elliott H. Lieb and Michael Loss, Stability of Coulomb systems with magnetic fields. II. The many-electron atom and the one-electron molecule, Comm. Math. Phys. 104 (1986), no. 2, 271 – 282. Michael Loss and Horng-Tzer Yau, Stability of Coulomb systems with magnetic fields. III. Zero energy bound states of the Pauli operator, Comm. Math. Phys. 104 (1986), no. 2, 283 – 290. · Zbl 0595.35098
[6] V. M. Galkin and Yu. A. Stepan\(^{\prime}\)yants, On the existence of stationary solitary waves in a rotating fluid, Prikl. Mat. Mekh. 55 (1991), no. 6, 1051 – 1055 (Russian); English transl., J. Appl. Math. Mech. 55 (1991), no. 6, 939 – 943 (1992). · Zbl 0786.76016 · doi:10.1016/0021-8928(91)90148-N
[7] O. A. Gil\(^{\prime}\)man, R. Grimshaw, and Yu. A. Stepan\(^{\prime}\)yants, Approximate analytical and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math. 95 (1995), no. 1, 115 – 126. · Zbl 0843.76008 · doi:10.1002/sapm1995951115
[8] R. Grimshaw, Evolution equations for weakly nonlinear, long internal waves in a rotating fluid, Stud. Appl. Math. 73 (1985), no. 1, 1 – 33. · Zbl 0572.76102 · doi:10.1002/sapm19857311
[9] Kadomtsev, B. B. and Petviashvili, V. I., On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15(6)(1970), 539-541. · Zbl 0217.25004
[10] Elliott H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math. 74 (1983), no. 3, 441 – 448. · Zbl 0538.35058 · doi:10.1007/BF01394245
[11] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109 – 145 (English, with French summary). P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223 – 283 (English, with French summary). P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109 – 145 (English, with French summary). P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223 – 283 (English, with French summary). · Zbl 0541.49009
[12] Yue Liu and Vladimir Varlamov, Stability of solitary waves and weak rotation limit for the Ostrovsky equation, J. Differential Equations 203 (2004), no. 1, 159 – 183. · Zbl 1064.35148 · doi:10.1016/j.jde.2004.03.026
[13] Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202 – 1204. , https://doi.org/10.1063/1.1664700 Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys. 9 (1968), 1204 – 1209. · Zbl 0283.35019 · doi:10.1063/1.1664701
[14] Ostrovsky, L. A., Nonlinear internal waves in a rotating ocean, Oceanologia, 18(1978), 181-191.
[15] Ostrovsky, L. A. and Stepanyants, Y. A., Nonlinear surface and internal waves in rotating fluids, Research Reports in Physics, Nonlinear Waves 3, Springer, Berlin, Heidelberg, 1990. · Zbl 0719.76021
[16] V. Varlamov and Yue Liu, Cauchy problem for the Ostrovsky equation, Discrete Contin. Dyn. Syst. 10 (2004), no. 3, 731 – 753. · Zbl 1059.35035 · doi:10.3934/dcds.2004.10.731
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.