×

Doob’s inequality for non-commutative martingales. (English) Zbl 1004.46043

The formulation of Doob’s inequality for non-commutative martingales in the theory of non-commutative probability encounters the following difficulty: for an increasing sequence \(( E_n)\), \(n \in \mathbb{N}\), of conditional expectations and a positive operator \(x\) in \(L_p\), the quantity \(\sup_n E_n(x)\) (or \(\sup_n |E_n(x) |\)) lies in neither \(L_p\) nor the class of unbounded operators at all. By adopting G. Pisier’s non-commutative vector-valued \(L_p\)-space \(L_p( N; \ell_{\infty})\): cf. [“Non-commutative vector valued \(L_p\)-spaces and completely \(p\)-summing maps”, Astérisque 247 (1998; Zbl 0937.46056)], the author overcomes the difficulty and succeeds in gaining the right formulation of Doob’s inequality that should be taken. However, Pisier’s definition is restricted only to hyperfinite von Neumann algebras \(\widetilde{N}\), namely, von Neumann algebras with a \(\sigma\)-weakly dense net of finite dimensional subalgebras. All these obstacles automatically disappear for the so-called dual version (DDp) of Doob’s inequality: that is, under the general setting with von Neumann algebras \(N\), for \(1 \leq p < \infty\) and a sequence \((x_n)\), \(n \in \mathbb{N}\), of positive elements in a non-commutative \(L_p\) space \(L_p(N)\), there exists a constant \(c_p\) depending only on \(p\) such that \[ \|\sum_n E_n (x_n) \|_p \leq c_p \|\sum_n x_n \|_p. \tag{DDp} \] This inequality is originally due to D. L. Burkholder, B. J. Davis and R. F. Gundy inequality in the commutative case [Proc. VIth Berkeley Symp. Math. Stat. Prob., Univ., Calif., 1970/1971, Vol. II, 223-240 (1972; Zbl 0253.60056)]. By resorting to duality argument, the author derives from (DDp) a version of Doob’s maximal inequality for non-commutative martingales with parameter range \(1 < p \leq \infty\). Indeed, (DDp) implies that \(T((x_n))\) \(=\) \(\sum_n E_n (x_n)\) defines a continuous linear map between \(L_p(l_1)\) and \(L_p\). Moreover, the norm \(\|T^* \|\) yields the best constant in Doob’s inequality for the conjugate index \(p' :=p/(p-1)\). In fact, it follows that \[ \left\|\sup_n |E_n (x) |\right\|_{p'} = \|T^*(x) \|_{L_{p'}(l_{\infty})} \leq \|T \|\cdot \|x \|_{p'} = c_p \|x \|_{p'}. \]
More precisely, although (DDp) admits an entirely elementary proof in the commutative case, its proof still works in the non-commutative case for \(p=2\), too. This fact gives the author a nice proper starting point towards the final aim of derivation of a non-commutative version of Doob’s inequality. Next the complex interpolation method is used to extend (DDp) to the interval \(1 \leq p \leq 2\), and suitable norms are introduced to make the above duality argument work even in the non-commutative case. Then the author establishes the dual version (DDp) in the range \(2 \leq p < \infty\), by using the duality arguments which rely on Pisier-Xu’s version of Stein’s inequality for non-commutative martingales [cf. G. Pisier and Q. Xu, Commun. Math. Phys. 189, No. 3, 667-698 (1997; Zbl 0898.46056)] in combination with techniques from Hilbert \(C^*\)-modules. By duality again, the author obtains the non-commutative Doob inequality in the more delicate range \(1 < p \leq 2\). The core of his arguments consists in the new connection between Hilbert \(C^*\)-modules and non-commutative \(L_p\) spaces (used before). Lastly, applications of Doob’s inequality in terms of submartingales and Doob decomposition are presented as well.

MSC:

46L53 Noncommutative probability and statistics
46L52 Noncommutative function spaces
60G48 Generalizations of martingales
46L51 Noncommutative measure and integration
46L08 \(C^*\)-modules

References:

[1] Av L., Springer Lect. Notes Math. pp 1442– (1990)
[2] Asmar S., Colloq. Math. 65 pp 69– (1993)
[3] [BL] J. Bergh and J. L fstr m, Interpolation spaces.An introduction, Grundl. Math. Wiss. 223, Springer-Verlag, Berlin-New York 1976.
[4] Biane R., Probab. Th. Rel. Fields 112 pp 3– (1998)
[5] [BDG] D. L. Burkholder, B. J. Davis and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, Univ. California Press, Berkeley, Calif. (1972), 223-240.
[6] [C] A. Connes, Une classification des facteurs de type III, Ann. Sci. Ec. Norm. Sup. (IV) 6 (1973), 133-252. · Zbl 0274.46050
[7] Cu I., J. Mult. Anal. 1 pp 17– (1971)
[8] Di S. J, R pp 53– (1993)
[9] [Dx] J. Dixmier, Von Neumann Algebras, North-Holland, Amsterdam-New-York-Oxford 1981.
[10] Fa T, J. Oper. Th. 17 pp 255– (1987)
[11] Fack H., Pacific J. Math. 123 pp 2– (1986)
[12] Fi F, J. Funct. Anal. 169 pp 1– (1999)
[13] [Ga] A. Garsia, Martingale Inequalities: Seminar Notes on recent progress, AMS Math. lect. notes, 1973. · Zbl 0284.60046
[14] [Ha1] U. Haagerup, Lp-spacesassociated with an arbitrary von Neumann algebra, Algebres d’operateurs et leurs applications en physique mathematique (Proc. Colloq., Marseille 1977), Colloq. Internat. CNRS 274, CNRS, Paris (1979), 175-184.
[15] Ha U, Springer Lect. Notes Math. 1132 pp 170– (1985)
[16] Ja R, Springer Lect. Notes Math. pp 1110– (1985)
[17] Ja R, Springer Lect. Notes Math. pp 1477– (1991)
[18] [KR] R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras I and II, Grad. Stud. Math. 15 16, AMS, Providence.RI, 1997.
[19] Ki E., Invent. Math. 112 pp 3– (1993)
[20] Ko H, J. Funct. Anal. 56 pp 29– (1984)
[21] [K ] Claus K ster, Quanten-Marko -Prozesse und Quanten-Brownsche Bewegungen, PhD-thesis, Stuttgart2000.
[22] [La] E. C. Lance, Hilbert C-modules. A toolkit for operator algebraists, London Math. Soc. Lect. Note Ser. 210, Cambridge University Press, Cambridge 1995.
[23] [LP] F. Lust-Piquard, Inegalites de Khintchine dans Cp1 p y , C. R. Acad. Sci. Paris (I) 303 (1986), 289-292.
[24] [Me] P. A. Meyer, Quantum probablity for probabilists, Springer Lect. Notes Math. 1538, Berlin-Heidelberg-New York 1995.
[25] Ne E, J. Funct. Anal. 15 pp 103– (1974)
[26] Pa V. I, Pitman Res. Notes Math. pp 146– (1986)
[27] Pedersen M., Acta Math. 130 pp 53– (1973)
[28] Pimsner S., Ann. Sci. Ec. Norm. Sup. 19 pp 57– (1986)
[29] [Ps1] G. Pisier, Factorization of linear operators and Geometry of Banach spaces, CBMS (Regional conferences of the A.M.S.) 60 (1986), reprinted with correction 1987.
[30] [Ps2] G. Pisier, Non-commutative vector valued Lp-spaces and completely p-summing maps, Asterisque 247 (1998).
[31] Pisier Q., Comm. Math. Phys. 189 pp 3– (1997)
[32] [Tk] M. Takesaki, Theory of operator algebras I, Springer Verlag, New York 1979.
[33] [Te] M. Terp, Lp-spacesassociated with von Neumann algebras I and II, Copenhagen Univ., 1981.
[34] [VDN] D. Voiculescu, K. Dykema and A. Nica, Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, CRM Monogr. Ser. 1, American Mathematical Society, Providence.RI, 1992. · Zbl 0795.46049
[35] Ye F., Math. Proc. Cambridge Phil. Soc. 77 pp 91– (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.