×

Large-scale stabilized FE computational analysis of nonlinear steady-state transport/reaction systems. (English) Zbl 1178.76240

Summary: The solution of the governing steady transport equations for momentum, heat and mass transfer in fluids undergoing non-equilibrium chemical reactions can be extremely challenging. The difficulties arise from both the complexity of the nonlinear solution behavior as well as the nonlinear, coupled, non-symmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this paper, we briefly review progress on developing a stabilized finite element (FE) capability for numerical solution of these challenging problems. The discussion considers the stabilized FE formulation for the low Mach number Navier-Stokes equations with heat and mass transport with non-equilibrium chemical reactions, and the solution methods necessary for detailed analysis of these complex systems. The solution algorithms include robust nonlinear and linear solution schemes, parameter continuation methods, and linear stability analysis techniques. Our discussion considers computational efficiency, scalability, and some implementation issues of the solution methods. Computational results are presented for a CFD benchmark problem as well as for a number of large-scale, 2D and 3D, engineering transport/reaction applications.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Barth, T.; Bochev, P.; Gunzburger, M.; Shadid, J., A taxonomy of consistently stabilized finite element methods for the Stokes problem, SIAM J. Sci. Comput., 25, 5, 1585-1607 (2004) · Zbl 1133.76307
[2] Benzi, M., Preconditioning techniques for large linear systems: a survey, J. Comput. Phys., 182, 418-477 (2002) · Zbl 1015.65018
[3] Bodke, A. S.; Olschki, D. A.; Schmidt, L. D.; Ranzi, E., High selectivities to ethylene by partial oxidation of ethane, Science, 258, 712-715 (1999)
[4] Brezzi, F., On existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Model. Math. Anal. Numer., 21, 129-151 (1974) · Zbl 0338.90047
[5] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[6] Brown, P. N.; Saad, Y., Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J. Optim., 4, 297-330 (1994) · Zbl 0814.65048
[7] Burman, E.; Ern, A., Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation, Comput. Methods Appl. Mech. Engrg., 191, 3833-3855 (2002) · Zbl 1101.76354
[8] Burroughs, E. A.; Lehoucq, R. B.; Romero, L. A.; Salinger, A. G., Linear stability of flow in a differentially heated cavity via large-scale eigenvalue calculations, Int. J. Numer. Methods Heat Fluid Flow, 14, 6, 803-822 (2004) · Zbl 1086.76511
[9] X.-C. Cai, An additive Schwarz algorithm for nonselfadjoint elliptic equations, in: T.F. Chan, G. Roland, P. Jacques, O.B. Widlund (Eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, 1989, pp. 232-244.; X.-C. Cai, An additive Schwarz algorithm for nonselfadjoint elliptic equations, in: T.F. Chan, G. Roland, P. Jacques, O.B. Widlund (Eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, 1989, pp. 232-244. · Zbl 0701.65072
[10] Cai, X.-C.; Gropp, W. D.; Keyes, D. E., Convergence rate estimate for a domain decomposition method, Numer. Math., 61, 2, 153-169 (1992) · Zbl 0727.65105
[11] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), Oxford University Press · Zbl 0142.44103
[12] Cliffe, K. A.; Spence, A.; Tavener, S. J., The numerical analysis of bifurcation problems with application to fluid mechanics, Acta Numer., 39-131 (2000) · Zbl 1005.65138
[13] Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equations, Comput. Methods Appl. Mech. Engrg., 156, 185-210 (1998) · Zbl 0959.76040
[14] Conaire, M. O.; Curran, H. J.; Simmie, J. M.; Pitz, W. J.; Westbrook, C. K., A comprehensive modeling study of hydrogen oxidation, Int. J. Chem. Kinet., 36, 11, 603-622 (2004)
[15] Davis, G. D.; Jones, I. P., Natural convection in a square cavity: a comparison exercise, Int. J. Numer. Methods Fluids, 3, 3, 227-248 (1983) · Zbl 0538.76076
[16] J.W. Demmel, J.R. Gilbert, X.S. Li, Superlu users’ guide, Technical Report LBNL-44289, Lawrence Berkeley National Laboratory, September 1999.; J.W. Demmel, J.R. Gilbert, X.S. Li, Superlu users’ guide, Technical Report LBNL-44289, Lawrence Berkeley National Laboratory, September 1999.
[17] Denshchikov, V. A.; Kontratev, V. N.; Romashev, A. N., Interaction between two opposed jets, Fluid Dyn., 6, 924-926 (1978)
[18] Denshchikov, V. A.; Kontratev, V. N.; Romashev, A. N.; Chubarov, V. M., Auto-oscillations of planar colliding jets, Fluid Dyn., 3, 460-462 (1983)
[19] Eisenstat, S. C.; Walker, H. F., Globally convergent inexact Newton methods, SIAM J. Optim., 4, 393-422 (1994) · Zbl 0814.65049
[20] Ern, A.; Guermond, J. L., Theory and Practice of Finite Elements (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1059.65103
[21] Farhat, C.; Maman, N.; Brown, G. W., Mesh partitioning for implicit computations via iterative domain decomposition—impact and optimization of the subdomain aspect ratio, Int. J. Numer. Methods Engrg., 38, 6, 989-1000 (1995) · Zbl 0825.73780
[22] Gropp, W. D.; Kaushik, D. K.; Keyes, D. E.; Smith, B. F., High-performance parallel implicit cfd, Parallel Comput., 27, 337-362 (2001) · Zbl 0971.68191
[23] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, Bifurcations of Vector Fields (1983), Springer-Verlag · Zbl 0515.34001
[24] Gunzburger, M., Finite Element Methods for Viscous Incompressible Flows (1989), Academic Press: Academic Press Boston · Zbl 0697.76031
[25] B. Hendrickson, R. Leland, An improved spectral graph partitioning algorithm for mapping parallel computations, Technical Report SAND 92-1460, Sandia National Laboratories, Albuquerque, NM, 1992.; B. Hendrickson, R. Leland, An improved spectral graph partitioning algorithm for mapping parallel computations, Technical Report SAND 92-1460, Sandia National Laboratories, Albuquerque, NM, 1992. · Zbl 0816.68093
[26] Hendrickson, B. A., Load balancing fictions, falsehoods and fallacies, Appl. Math. Model., 25, 2, 99-108 (2000) · Zbl 1076.65537
[27] Hendrickson, B. A.; Kolda, T. G., Graph partitioning models for parallel computing, Parallel Comput., 26, 12, 1519-1534 (2000) · Zbl 0948.68130
[28] Huff, M.; Schmidt, L. D., Ethylene formation by oxidative dehydrogenation of ethane over monoliths at very short contact times, J. Phys. Chem., 97, 11815 (1993)
[29] Huff, M.; Schmidt, L. D., Elementary step model of ethane oxidative dehydrogenation on pt-coated monoliths, AIChE J., 42, 12, 3484-3497 (1996)
[30] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VII. the Galerkin/Least-Squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100
[31] Hughes, T. J.R.; Tezduyar, T. E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. Methods Appl. Mech. Engrg., 45, 217-284 (1984) · Zbl 0542.76093
[32] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044
[33] T.J.R. Hughes, A. Brooks, A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, in: R.H. Gallagher et al., (Ed.), Finite Elements in Fluids, vol. 4, J. Willey & Sons, 1982, pp. 47-65.; T.J.R. Hughes, A. Brooks, A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, in: R.H. Gallagher et al., (Ed.), Finite Elements in Fluids, vol. 4, J. Willey & Sons, 1982, pp. 47-65.
[34] Hughes, T. J.R.; Brooks, A. N., A multidimensional upwind scheme with no cross-wind diffusion, (Hughes, T. J.R., Finite Element Methods for Convection Dominated Flows, AMD, vol. 34 (1979), ASME: ASME New York), 19-35 · Zbl 0423.76067
[35] Hughes, T. J.R.; Franca, L., A new finite element formulation for computational fluid dynamics: VII, The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity pressure spaces, Comput. Methods Appl. Mech. Engrg., 65, 85-96 (1987) · Zbl 0635.76067
[36] Hughes, T. J.R.; Franca, L.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[37] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III, The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[38] Hughes, T. J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 341-355 (1986) · Zbl 0622.76074
[39] S.A. Hutchinson, L. Prevost, J.N. Shadid, C. Tong, R.S. Tuminaro, Aztec user’s guide version 2.0, Technical Report SAND 99-8801J, Sandia National Laboratories, 1999.; S.A. Hutchinson, L. Prevost, J.N. Shadid, C. Tong, R.S. Tuminaro, Aztec user’s guide version 2.0, Technical Report SAND 99-8801J, Sandia National Laboratories, 1999.
[40] R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Technical Report SAND 89-8009, Sandia National Laboratories, 1989.; R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Technical Report SAND 89-8009, Sandia National Laboratories, 1989.
[41] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue problems, (Rabinowitz, P. H., Application of Bifurcation Theory (1977), Dekker: Dekker New York), 45-52 · Zbl 0581.65043
[42] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 2, 357-397 (2004) · Zbl 1036.65045
[43] Kommu, S.; Wilson, G. M.; Khomami, B., A theoretical/experimental study of silicon epitaxy in horizontal single-wafer chemical vapor deposition reactors, J. Elec. Chem. Soc., 147, 4, 1538-1550 (2000)
[44] Kubicek, M.; Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures, Computational Physics (1983), Springer-Verlag: Springer-Verlag New York, NY · Zbl 0529.65035
[45] Lehoucq, R. B.; Meergbergen, K., Using generalized Cayley transformations within an inexact rational Krylov sequence method, SIAM J. Matrix Anal. Appl., 20, 1, 131-148 (1998) · Zbl 0931.65035
[46] Lehoucq, R. B.; Salinger, A. G., Massively parallel linear stability analysis with P_ARPACK for 3D fluid flow modeled with MPSalsa, Lecture Notes Comput. Sci., 1541, 286-295 (1998)
[47] Lehoucq, R. B.; Sorensen, D. C.; Yang, C., ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (1998), SIAM: SIAM Phildelphia, PA · Zbl 0901.65021
[48] Lehoucq, R. B.; Salinger, A. G., Large-scale eigenvalue calculations for stability analysis of steady flows on massively parallel computers, Int. J. Numer. Methods Fluids, 36, 309-327 (2001) · Zbl 1037.76036
[49] Lin, C. C., The Theory of Hydrodynamic Stability (1955), Cambridge Univ. Press · Zbl 0068.39202
[50] Meerbergen, K.; Spence, A.; Roose, D., Shift-invert and Cayley transforms for the detection of rightmost eigenvalues of nonsymmetric matrices, BIT, 34, 409-423 (1994) · Zbl 0814.65037
[51] R.P. Pawlowski, A.G. Salinger. Numerical simulation of the partial catalytic oxidation of ethane to ethylene in short contact time reactors, Technical Report Sand 2001-1338, Sandia National Laboratories, Albuquerque NM, 87185, 1996.; R.P. Pawlowski, A.G. Salinger. Numerical simulation of the partial catalytic oxidation of ethane to ethylene in short contact time reactors, Technical Report Sand 2001-1338, Sandia National Laboratories, Albuquerque NM, 87185, 1996.
[52] R.P. Pawlowski, A.G. Salinger, J.N. Shadid, T.J. Mountziaris, Stability analysis of laminar isothermal impinging jet flows, J. Fluid Mech., submitted for publication.; R.P. Pawlowski, A.G. Salinger, J.N. Shadid, T.J. Mountziaris, Stability analysis of laminar isothermal impinging jet flows, J. Fluid Mech., submitted for publication. · Zbl 1086.76019
[53] R.P. Pawlowski, J.N. Shadid, J.P. Simonis, H.F. Walker, Globalization techniques for Newton-Krylov methods and applications to the fully-coupled solution of the Navier-Stokes equations, SIAM Rev., submitted for publication.; R.P. Pawlowski, J.N. Shadid, J.P. Simonis, H.F. Walker, Globalization techniques for Newton-Krylov methods and applications to the fully-coupled solution of the Navier-Stokes equations, SIAM Rev., submitted for publication. · Zbl 1110.65039
[54] Saad, Y., Krylov subspace methods for solving large unsymmetric linear systems, Math. Comput., 37, 155, 105-126 (1981) · Zbl 0474.65019
[55] Saad, Y., Iterative Methods for Sparse Linear Systems (1996), PWS Publishing Company: PWS Publishing Company Boston · Zbl 1002.65042
[56] Salinger, A. G.; Burroughs, E. A.; Pawlowski, R. P.; Phipps, E. T.; Romero, L. A., Bifurcation tracking algorithms and software for large scale applications, Int. J. Bifurcat. Chaos, 15, 3, 1015-1032 (2005) · Zbl 1076.65118
[57] Salinger, A. G.; Lehoucq, R. B.; Pawlowski, R. P.; Shadid, J. N., Computational bifurcation and stability studies of the 8:1 thermal cavity problem, Int. J. Numer. Methods Fluids, 40, 1059-1073 (2002) · Zbl 1047.76053
[58] Salinger, A. G.; Pawlowski, R. P.; Shadid, J. N.; van Bloemen Waanders, B. G., Computational analysis and optimization of a chemical vapor deposition reactor with large-scale computing, Ind. Engrg. Chem. Res., 43, 4612-4623 (2004)
[59] J.N. Shadid, A.G. Salinger, R.C. Schmidt, S.A. Hutchinson, G.L. Hennigan, K.D. Devine, H.K. Moffat, MPSalsa: a finite element computer program for reacting flow problems Part 1: Theoretical development, Technical Report Sand 98-2864, Sandia National Laboratories, Albuquerque NM, 87185, January 1999.; J.N. Shadid, A.G. Salinger, R.C. Schmidt, S.A. Hutchinson, G.L. Hennigan, K.D. Devine, H.K. Moffat, MPSalsa: a finite element computer program for reacting flow problems Part 1: Theoretical development, Technical Report Sand 98-2864, Sandia National Laboratories, Albuquerque NM, 87185, January 1999.
[60] Shadid, J. N.; Tuminaro, R. S.; Walker, H. F., An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport, J. Comput. Phys., 137, 155-185 (1997) · Zbl 0898.76066
[61] Shadid, J. N., A fully-coupled Newton-Krylov solution method for parallel unstructured finite element fluid flow, heat and mass transfer simulations, Int. J. CFD, 12, 199-211 (1999) · Zbl 0969.76049
[62] Shadid, J. N.; Hutchinson, S. A.; Hennigan, G. L.; Moffet, H. K.; Devine, K. D.; Salinger, A. G., Efficient parallel computation of unstructured finite element reacting flow solutions, Parallel Comput., 23, 1307-1325 (1997) · Zbl 0894.68019
[63] Shadid, J. N.; Tuminaro, R. S.; Devine, K. D.; Hennigan, G. L.; Lin, P. T., Performance of fully-coupled domain decomposition preconditioners for finite element transport/reaction simulations, J. Comput. Phys., 205, 24-47 (2005) · Zbl 1087.76069
[64] F. Shakib, Finite element analysis of the compressible Euler and Navier-Stokes equations. Ph.D. thesis, Division of Applied Mathematics, Stanford University, 1989.; F. Shakib, Finite element analysis of the compressible Euler and Navier-Stokes equations. Ph.D. thesis, Division of Applied Mathematics, Stanford University, 1989.
[65] F. Shakib, Personal Communication, 1997.; F. Shakib, Personal Communication, 1997.
[66] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X, the compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89, 141-219 (1991) · Zbl 0838.76040
[67] Smith, B.; Bjorstad, P.; Gropp, W., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Cambridge University Press · Zbl 0857.65126
[68] Tamir, A., Impinging stream reactors, fundamentals and applications, Transport Processes in Engineering, vol. 7 (1994), Elsevier Science
[69] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow calculations, Adv. Appl. Mech., 28, 1-44 (1992) · Zbl 0747.76069
[70] Tezduyar, T. E.; Park, Y. J., Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg., 59, 307-325 (1986) · Zbl 0593.76096
[71] Tuminaro, R. S.; Tong, C. H.; Shadid, J. N.; Devine, K. D.; Day, D. M., On a multilevel preconditioning module for unstructured mesh Krylov solvers: two-level Schwarz, Commun. Numer. Method. Engrg., 18, 383-389 (2002) · Zbl 0999.65101
[72] Veser, G.; Schmidt, L. D., Ignition and extinction in the catalytic oxidation of hydrocarbons over platinum, AIChE J., 42, 4, 1077-1087 (1996)
[73] Vincent, C.; Boyer, R., A preconditioned conjugate gradient Uzawa-type method for the solution of the Stokes problem by mixed Q1-P0 stabilized finite elements, Int. J. Numer. Methods Fluids, 14, 289-298 (1992) · Zbl 0745.76046
[74] Wille, S. O., A preconditioned alternating inner-outer solution method for the mixed finite element formulation of the Navier-Stokes equations, Int. J. Numer. Methods Fluids, 18, 1135-1151 (1994) · Zbl 0806.76047
[75] K.H. Winters, K.A. Cliffe, C.P. Jackson, The prediction of instabilities using bifurcation theory, in: R.W. Lewis, E. Hinton, P. Beltess, B.A. Schrefler (Eds.), Numerical Methods in Transient and Coupled Systems, 1987, pp. 179-198.; K.H. Winters, K.A. Cliffe, C.P. Jackson, The prediction of instabilities using bifurcation theory, in: R.W. Lewis, E. Hinton, P. Beltess, B.A. Schrefler (Eds.), Numerical Methods in Transient and Coupled Systems, 1987, pp. 179-198.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.