×

Multiscale-stabilized solutions to one-dimensional systems of conservation laws. (English) Zbl 1176.76067

Summary: We present a variational multiscale formulation for the numerical solution of one-dimensional systems of conservation laws. The key idea of the proposed formulation, originally presented by T. J. R. Hughes [Comput. Methods Appl. Mech. Eng. 127, No. 1–4, 387–401 (1995; Zbl 0866.76044)], is a multiple-scale decomposition into resolved grid scales and unresolved subgrid scales. Incorporating the effect of the subgrid scales onto the coarse scale problem results in a finite element method with enhanced stability properties, capable of accurately representing the sharp features of the solution. In the formulation developed herein, the multiscale split is invoked prior to any linearization of the equations. Special attention is given to the choice of the matrix of stabilizing coefficients and the discontinuity-capturing diffusion. The methodology is applied to the one-dimensional simulation of three-phase flow in porous media, and the shallow water equations. These numerical simulations clearly show the potential and applicability of the formulation for solving highly nonlinear, nearly hyperbolic systems on very coarse grids. Application of the numerical formulation to multidimensional problems is presented in a forthcoming paper.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76S05 Flows in porous media; filtration; seepage
76T30 Three or more component flows

Citations:

Zbl 0866.76044

References:

[1] Arbogast, T., Numerical subgrid upscaling of two-phase flow in porous media, (Chen, Z.; Ewing, R. E.; Shi, Z.-C., Numerical Treatment of Multiphase Flow in Porous Media. Numerical Treatment of Multiphase Flow in Porous Media, Lecture Notes in Physics, vol. 552 (2000), Berlin: Berlin Springer), 35-49 · Zbl 1072.76560
[2] Arbogast, T., Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow, Comput. Geosci., 6, 3-4, 453-481 (2002) · Zbl 1094.76532
[3] Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), Elsevier: Elsevier London
[4] Baiocchi, C.; Brezzi, F.; Franca, L. P., Virtual bubbles and Galerkin/least-squares type methods (Ga.L.S), Comput. Methods Appl. Mech. Engrg., 105, 125-141 (1993) · Zbl 0772.76033
[5] Brezzi, F.; Franca, L. P.; Hughes, T. J.R.; Russo, A., \(b\)=∫\(g\), Comput. Methods Appl. Mech. Engrg., 145, 329-339 (1997) · Zbl 0904.76041
[6] Brooks, A. N.; Hughes, T. J.R., Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[7] Chavent, G.; Jaffré, J., Mathematical Models and Finite Elements for Reservoir Simulation, Studies in Mathematics and its Applications, vol. 17 (1986), Elsevier: Elsevier North-Holland · Zbl 0603.76101
[8] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 110, 325-342 (1993) · Zbl 0844.76048
[9] Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg., 156, 185-210 (1998) · Zbl 0959.76040
[10] Codina, R., On stabilized finite element methods for linear systems of convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Engrg., 188, 61-82 (2000) · Zbl 0973.76041
[11] Codina, R., A stabilized finite element method for generalized stationary incompressible flows, Comput. Methods Appl. Mech. Engrg., 190, 2681-2706 (2001) · Zbl 0996.76045
[12] Codina, R., Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg., 191, 39-40, 4295-4321 (2002) · Zbl 1015.76045
[13] Codina, R.; Blasco, J., Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales, Comput. Visual. Sci., 4, 3, 167-174 (2002) · Zbl 0995.65101
[14] Franca, L. P.; Nesliturk, A.; Stynes, M., On the stability of residual free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Comput. Methods Appl. Mech. Engrg., 166, 35-49 (1998) · Zbl 0934.65127
[15] Galeão, A. C.; Dutra do Carmo, E. G., A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems, Comput. Methods Appl. Mech. Engrg., 68, 83-95 (1988) · Zbl 0626.76091
[16] Garikipati, K.; Hughes, T. J.R., A study of strain localization in a multiple scale framework—the one-dimensional problem, Comput. Methods Appl. Mech. Engrg., 159, 193-222 (1998) · Zbl 0961.74009
[17] Garikipati, K.; Hughes, T. J.R., A variational multiscale approach to strain localization—formulation for multidimensional problems, Comput. Methods Appl. Mech. Engrg., 188, 39-60 (2000) · Zbl 1011.74069
[18] Hauke, G., A simple subgrid scale stabilized method for the advection-diffusion-reaction equation, Comput. Methods Appl. Mech. Engrg., 191, 2925-2947 (2002) · Zbl 1005.76057
[19] Hauke, G.; García-Olivares, A., Variational subgrid scale formulations for the advection-diffusion-reaction equation, Comput. Methods Appl. Mech. Engrg., 190, 6847-6865 (2001) · Zbl 0996.76074
[20] Hou, T. Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) · Zbl 0880.73065
[21] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044
[22] Hughes, T. J.R.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 3-24 (1998) · Zbl 1017.65525
[23] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[24] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 329-336 (1986) · Zbl 0587.76120
[25] Hughes, T. J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 341-355 (1986) · Zbl 0622.76074
[26] Hughes, T. J.R.; Mazzei, L.; Jansen, K. E., Large Eddy Simulation and the variational multiscale method, Comput. Visual. Sci., 3, 47-59 (2000) · Zbl 0998.76040
[27] Hughes, T. J.R.; Mazzei, L.; Oberai, A. A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13, 2, 505-512 (2001) · Zbl 1184.76236
[28] Hughes, T. J.R.; Oberai, A. A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys. Fluids, 13, 6, 1784-1799 (2001) · Zbl 1184.76237
[29] Jansen, K. E.; Collis, S. S.; Whiting, C.; Shakib, F., A better consistency for low-order stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 174, 153-170 (1999) · Zbl 0956.76044
[30] R. Juanes, Displacement theory and multiscale numerical modeling of three- phase flow in porous media, Ph.D. Dissertation, University of California at Berkeley, March 2003; R. Juanes, Displacement theory and multiscale numerical modeling of three- phase flow in porous media, Ph.D. Dissertation, University of California at Berkeley, March 2003
[31] R. Juanes, T.W. Patzek, Multiple scale stabilized finite elements for the simulation of tracer injections and waterflood, in: SPE/DOE Thirteenth Symposium on Improved Oil Recovery, Tulsa, OK, April 13-17, 2002 (SPE 75231), submitted to Soc. Pet. Eng. J; R. Juanes, T.W. Patzek, Multiple scale stabilized finite elements for the simulation of tracer injections and waterflood, in: SPE/DOE Thirteenth Symposium on Improved Oil Recovery, Tulsa, OK, April 13-17, 2002 (SPE 75231), submitted to Soc. Pet. Eng. J
[32] Juanes, R.; Patzek, T. W., Analytical solution to the Riemann problem of three-phase flow in porous media, Transp. Porous Media, 55, 1, 47-70 (2004)
[33] Juanes, R.; Patzek, T. W., Multiscale-stabilized finite element methods for miscible and immiscible flow in porous media, J. Hydraul. Res., 42, special issue, 131-140 (2004)
[34] Juanes, R.; Patzek, T. W., Relative permeabilities for strictly hyperbolic models of three-phase flow in porous media, Transp. Porous Media, 57, 2, 125-152 (2004)
[35] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, (Cambridge Texts in Applied Mathematics (2002), Cambridge University Press) · Zbl 0682.76053
[36] Masud, A.; Hughes, T. J.R., A stabilized mixed finite element method for Darcy flow, Comput. Methods Appl. Mech. Engrg., 191, 39-40, 4341-4370 (2002) · Zbl 1015.76047
[37] Oberai, A. A.; Pinsky, P. M., A multiscale finite element method for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 154, 281-297 (1998) · Zbl 0937.65119
[38] Oberai, A. A.; Pinsky, P. M., A residual-based finite element method for the Helmholtz equation, Int. J. Numer. Meth. Engrg., 49, 3, 399-419 (2000) · Zbl 0984.76051
[39] Peszynska, M.; Wheeler, M. F.; Yotov, I., Mortar upscaling for multiphase flow in porous media, Comput. Geosci., 6, 1, 73-100 (2002) · Zbl 1056.76048
[40] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89, 141-219 (1991) · Zbl 0838.76040
[41] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, vol. 25 (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0884.65097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.