×

A note on Cheeger sets. (English) Zbl 1168.39008

Authors’ abstract: Starting from the quantitative isoperimetric inequality, we prove a sharp quantitative version of the Cheeger inequality.

MSC:

39B62 Functional inequalities, including subadditivity, convexity, etc.
Full Text: DOI

References:

[1] F. Alter, V. Caselles, and A. Chambolle, A characterization of convex calibrable sets in \Bbb R^{\Bbb N}, Math. Ann. 332 (2005), no. 2, 329 – 366. · Zbl 1108.35073 · doi:10.1007/s00208-004-0628-9
[2] A. Alvino, V. Ferone and C. Nitsch, The quantitative isoperimetric inequality for convex domains in the plane, preprint. · Zbl 1219.52006
[3] Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. · Zbl 0957.49001
[4] Felix Bernstein, Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfl��che und in der Ebene, Math. Ann. 60 (1905), no. 1, 117 – 136 (German). · JFM 36.0432.01 · doi:10.1007/BF01447496
[5] Tilak Bhattacharya, Some observations on the first eigenvalue of the \?-Laplacian and its connections with asymmetry, Electron. J. Differential Equations (2001), No. 35, 15. · Zbl 0991.35032
[6] Tilak Bhattacharya and Allen Weitsman, Bounds for capacities in terms of asymmetry, Rev. Mat. Iberoamericana 12 (1996), no. 3, 593 – 639. · Zbl 0870.31001 · doi:10.4171/RMI/208
[7] T. Bonnesen, Über das isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), no. 3-4, 252 – 268 (German). · JFM 50.0487.03 · doi:10.1007/BF01556082
[8] Haïm Brezis and Elliott H. Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal. 62 (1985), no. 1, 73 – 86. · Zbl 0577.46031 · doi:10.1016/0022-1236(85)90020-5
[9] Giuseppe Buttazzo, Guillaume Carlier, and Myriam Comte, On the selection of maximal Cheeger sets, Differential Integral Equations 20 (2007), no. 9, 991 – 1004. · Zbl 1212.49019
[10] Guillaume Carlier and Myriam Comte, On a weighted total variation minimization problem, J. Funct. Anal. 250 (2007), no. 1, 214 – 226. · Zbl 1120.49011 · doi:10.1016/j.jfa.2007.05.022
[11] Vicent Caselles, Antonin Chambolle, and Matteo Novaga, Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232 (2007), no. 1, 77 – 90. · Zbl 1221.35171 · doi:10.2140/pjm.2007.232.77
[12] Andrea Cianchi, A quantitative Sobolev inequality in \?\?, J. Funct. Anal. 237 (2006), no. 2, 466 – 481. · Zbl 1110.46020 · doi:10.1016/j.jfa.2005.12.008
[13] Andrea Cianchi, Sharp Morrey-Sobolev inequalities and the distance from extremals, Trans. Amer. Math. Soc. 360 (2008), no. 8, 4335 – 4347. · Zbl 1153.46019
[14] A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, The sharp Sobolev inequality in quantitative form, submitted paper. Available in preprint version on http://cvgmt.sns.it/. To appear in Journal of the European Mathematical Society. · Zbl 1185.46025
[15] A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, On the isoperimetric deficit in the Gauss space, submitted paper. Available in preprint version on http://cvgmt.sns.it/. · Zbl 1219.28005
[16] Luca Esposito, Nicola Fusco, and Cristina Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 4, 619 – 651. · Zbl 1170.52300
[17] A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, submitted paper. Available in preprint version on http://cvgmt.sns.it/. · Zbl 1196.49033
[18] L. E. Fraenkel, On the increase of capacity with asymmetry, Comput. Methods Funct. Theory 8 (2008), no. 1-2, 203 – 224. · Zbl 1156.31005 · doi:10.1007/BF03321684
[19] Pedro Freitas and David Krejčiřík, A sharp upper bound for the first Dirichlet eigenvalue and the growth of the isoperimetric constant of convex domains, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2997 – 3006. · Zbl 1147.58030
[20] Bent Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in \?\(^{n}\), Trans. Amer. Math. Soc. 314 (1989), no. 2, 619 – 638. · Zbl 0679.52007
[21] N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. 168 (2008). · Zbl 1187.52009
[22] N. Fusco, F. Maggi, and A. Pratelli, The sharp quantitative Sobolev inequality for functions of bounded variation, J. Funct. Anal. 244 (2007), no. 1, 315 – 341. · Zbl 1121.46029 · doi:10.1016/j.jfa.2006.10.015
[23] N. Fusco, F. Maggi and A. Pratelli, Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5). · Zbl 1176.49047
[24] R. R. Hall, A quantitative isoperimetric inequality in \?-dimensional space, J. Reine Angew. Math. 428 (1992), 161 – 176. · Zbl 0746.52012 · doi:10.1515/crll.1992.428.161
[25] R. R. Hall, W. K. Hayman, and A. W. Weitsman, On asymmetry and capacity, J. Analyse Math. 56 (1991), 87 – 123. · Zbl 0747.31004 · doi:10.1007/BF02820461
[26] W. Hansen and N. Nadirashvili, Isoperimetric inequalities in potential theory, Proceedings from the International Conference on Potential Theory (Amersfoort, 1991), 1994, pp. 1 – 14. · Zbl 0796.31003 · doi:10.1007/BF01047833
[27] B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the \?-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 (2003), no. 4, 659 – 667. · Zbl 1105.35029
[28] Bernd Kawohl and Thomas Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math. 225 (2006), no. 1, 103 – 118. · Zbl 1133.52002 · doi:10.2140/pjm.2006.225.103
[29] B. Kawohl and M. Novaga, The \?-Laplace eigenvalue problem as \?\to 1 and Cheeger sets in a Finsler metric, J. Convex Anal. 15 (2008), no. 3, 623 – 634. · Zbl 1186.35115
[30] F. Maggi, Some methods for studying stability in isoperimetric type problems, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 3, 367 – 408. · Zbl 1146.49037
[31] Antonios D. Melas, The stability of some eigenvalue estimates, J. Differential Geom. 36 (1992), no. 1, 19 – 33. · Zbl 0770.35049
[32] Robert Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1, 1 – 29. · Zbl 0404.52012 · doi:10.2307/2320297
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.