×

Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants. (English) Zbl 1475.49051

Let \(\Omega\subset \mathbb{R}^n\) be any open set with finite (Lebesgue) measure. Its Cheeger constant is defined as \[ h(\Omega)=\inf \left\{\tfrac{P(E)}{|E|}, E\subset \Omega\right\} \] (where \(P(E)\) is the perimeter and \(|E|\) the measure). Let us denote by \(B_\Omega\) the ball, centered at the origin, with the same measure as \(\Omega\). The isoperimetric inequality \(h(\Omega) \geq h(B_\Omega)\) is well known. A quantitative improvement has been given by Figalli, Maggi, Pratelli in [A. Figalli et al., Proc. Am. Math. Soc. 137, No. 6, 2057–2062 (2009; Zbl 1168.39008)], namely \[ \frac{h(\Omega) - h(B_\Omega)}{h(B_\Omega)} \geq c(n) \alpha^2(\Omega) \] where \(\alpha(\Omega)\) is the so-called Fraenkel asymmetry and \(c(n)\) a dimensional constant.
In this paper, the authors improve a little bit this quantitative inequality by replacing the Fraenkel asymmetry by the stronger measure of asymmetry, known as the Riesz asymmetry index defined by: \[ \zeta(\Omega)=\int_{B_\Omega} \frac{dx}{|x|}-\max_{y\in \mathbb{R}^n} \int_\Omega \frac{dx}{|x-y|}. \] They prove the following inequality \[ \frac{h(\Omega) - h(B_\Omega)}{h(B_\Omega)} \geq c(n) \zeta(\Omega). \] In the second part of the paper, the authors give the same kind of result in the Gaussian setting (that seems to be new), replacing the Lebesgue measure by the Gaussian measure and the perimeter by the Gaussian perimeter. In that context, the quantitative inequality is given in terms of the Gaussian Fraenkel asymmetry. They also provide another inequality in terms of a different index involving the barycenter. They give, in each case, examples proving that the inequalities are sharp.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49Q20 Variational problems in a geometric measure-theoretic setting
39B62 Functional inequalities, including subadditivity, convexity, etc.

Citations:

Zbl 1168.39008

References:

[1] Barchiesi, M., A. Brancolini, and V. Julin: Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality. -Ann. Prob. 45:2, 2017, 668-697. · Zbl 1377.49050
[2] Barchiesi, M., and V. Julin: Robustness of the Gaussian concentration inequality and the Brunn-Minkowski inequality. -Calc. Var. Partial Differential Equations 56:3, 2017, 80. · Zbl 1378.60042
[3] Bobkov, V., and E. Parini: On the Cheeger problem for rotationally invariant domains. -Manuscripta Math. (to appear). · Zbl 1477.49063
[4] Borell, C.: The Brunn-Minkowski inequality in Gauss space. -Invent. Math. 30:2, 1975, 207-216. · Zbl 0292.60004
[5] Brasco, L., and G. De Philippis: Spectral inequalities in quantitative form. -In: Shape Optimization and Spectral Theory, Chapter 7, edited by A. Henrot, De Gruyter Open, Warsaw, 2017, 201-281. · Zbl 1373.49051
[6] Brasco, L., G. De Philippis, and B. Velichkov: Faber-Krahn inequalities in sharp quan-titative form. -Duke Math. J. 164:9, 2015, 1777-1831. · Zbl 1334.49149
[7] Brasco, L., E. Lindgren, and E. Parini: The fractional Cheeger problem. -Interfaces Free Bound. 16:3, 2014, 419-458. · Zbl 1301.49115
[8] Bueno, H., and G. Ercole: Solutions of the Cheeger problem via torsion functions. -J. Math. Anal. Appl. 381:1, 2011, 263-279. · Zbl 1260.49080
[9] Carlen, E. A., and C. Kerce: On the cases of equality in Bobkov’s inequality and Gaussian rearrangement. -Calc. Var. Partial Differential Equations 13, 2001, 1-18. · Zbl 1009.49029
[10] Caselles, V., G. Facciolo, and E. Meinhardt: Anisotropic Cheeger sets and applications. -SIAM J. Imaging Sciences 2:4, 2009, 1211-1254. · Zbl 1193.49051
[11] Caselles, V., M. Miranda, Jr., and M. Novaga: Total variation and Cheeger sets in Gauss space. -J. Funct. Anal. 259:6, 2010, 1491-1516. · Zbl 1195.49054
[12] Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. -In: Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N.J., 1970, 195-199. · Zbl 0212.44903
[13] Cianchi, A.: A quantitative Sobolev inequality in BV . -J. Funct. Anal. 237:2, 2006, 466-481. · Zbl 1110.46020
[14] Cianchi, A.: Sharp Sobolev-Morrey inequalities and the distance from extremals. -Trans. Amer. Math. Soc. 360:8, 2008, 4335-4347. · Zbl 1153.46019
[15] Cianchi, A., N. Fusco, F. Maggi, and A. Pratelli: The sharp Sobolev inequality in quantitative form. -J. Eur. Math. Soc. (JEMS) 11:5, 2009, 1105-1139. · Zbl 1185.46025
[16] Cianchi, A., N. Fusco, F. Maggi, and A. Pratelli: On the isoperimetric deficit in Gauss space. -Amer. J. Math. 133:1, 2011, 131-186. · Zbl 1219.28005
[17] Demengel, F.: Functions locally almost 1-harmonic. -Appl. Anal. 83:9, 2004, 865-896. · Zbl 1135.35333
[18] Eldan, R.: A two-sided estimate for the Gaussian noise stability deficit. -Invent. Math. 201:2, 2015, 561-624. · Zbl 1323.60035
[19] Esposito, L., N. Fusco, and C. Trombetti: A quantitative version of the isoperimetric inequality: the anisotropic case. -Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4:4, 2005, 619-651. · Zbl 1170.52300
[20] Figalli, A., F. Maggi, and A. Pratelli: A note on Cheeger sets. -Proc. Amer. Math. Soc. 137:6, 2009, 2057-2062. · Zbl 1168.39008
[21] Figalli, A., F. Maggi, and A. Pratelli: A mass transportation approach to quantitative isoperimetric inequalities. -Invent. Math. 182:1, 2010, 167-211. · Zbl 1196.49033
[22] Fraenkel, L. E.: On the increase of capacity with asymmetry. -Comput. Methods Funct. Theory 8:1-2, 2008, 203-224. · Zbl 1156.31005
[23] Frank, R. L., and E. H. Lieb: A note on a theorem of M. Christ. -arXiv:1909.04598.
[24] Fuglede, B.: Stability in the isoperimetric problem for convex or nearly spherical domains in R n . -Trans. Amer. Math. Soc. 314:2, 1989, 619-638. · Zbl 0679.52007
[25] Fusco, N.: The quantitative isoperimetric inequality and related topics. -Bull. Math. Sci. 5:3, 2015, 517-607. · Zbl 1327.49076
[26] Fusco, N., and V. Julin: A strong form of the quantitative isoperimetric inequality. -Calc. Var. Partial Differential Equations 50:3-4, 2014, 925-937. · Zbl 1296.49041
[27] Fusco, N., F. Maggi, and A. Pratelli: The sharp quantitative Sobolev inequality for functions of bounded variation. -J. Funct. Anal. 244:1, 2007, 315-341. · Zbl 1121.46029
[28] Fusco, N., F. Maggi, and A. Pratelli: The sharp quantitative isoperimetric inequality. -Ann. of Math. (2) 168:3, 2008, 941-980. · Zbl 1187.52009
[29] Fusco, N., F. Maggi, and A. Pratelli: Stability estimates for certain Faber-Krahn, iso-capacitary and Cheeger inequalities. -Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 8:1, 2009, 51-71. · Zbl 1176.49047
[30] Fusco, N., and A. Pratelli: Sharp stability for the Riesz potential. -ESAIM Control Optim. Calc. Var. 26, 2020, 113. · Zbl 1473.26036
[31] Giusti, E.: On the equation of surfaces of prescribed mean curvature. Existence and unique-ness without boundary conditions. -Invent. Math. 46:2, 1978, 111-137. · Zbl 0381.35035
[32] Hansen, W., and N. Nadirashvili: Isoperimetric inequalities in potential theory. -Potential Anal. 3:1, 1994, 1-14. · Zbl 0825.31003
[33] Ionescu, I. R., and T. Lachand-Robert: Generalized Cheeger sets related to landslides. -Calc. Var. Partial Differential Equations 23:2, 2005, 227-249. · Zbl 1062.49036
[34] Julin, V.: Isoperimetric problem with a Coulomb repulsive term. -Indiana Univ. Math. J. 63:1, 2014, 77-89. · Zbl 1311.49110
[35] Kawohl, B., and V. Fridman: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. -Comment. Math. Univ. Carolin. 44:4, 2003, 659-667. · Zbl 1105.35029
[36] Kawohl, B. and T. Lachand-Robert: Characterization of Cheeger sets for convex subsets of the plane. -Pacific J. Math. 225:1, 2006, 103-118. · Zbl 1133.52002
[37] Krejčiřík, D., G. P. Leonardi, and P. Vlachopulos: The Cheeger constant of curved tubes. -Arch. Math. (Basel) 112:4, 2019, 429-436. · Zbl 1415.49027
[38] Leonardi, G. P.: An overview on the Cheeger problem. -In: New Trends in Shape Opti-mization, Internat. Ser. Numer. Math. 166, Springer Int. Publ., 2015, 117-139. · Zbl 1329.49088
[39] Leonardi, G. P., R. Neumayer, and G. Saracco: The Cheeger constant of a Jordan domain without necks. -Calc. Var. Partial Differential Equations 56:6, 2017, 164. · Zbl 1381.49022
[40] Leonardi, G. P., and A. Pratelli: On the Cheeger sets in strips and non-convex domains. -Calc. Var. Partial Differential Equations 55:1, 2016, 15. · Zbl 1337.49074
[41] Leonardi, G. P., and G. Saracco: The prescribed mean curvature equation in weakly regular domains. -NoDEA Nonlinear Differ. Equ. Appl. 25:2, 2018, 9. · Zbl 1391.49041
[42] Leonardi, G. P., and G. Saracco: Minimizers of the prescribed curvature functional in a Jordan domain with no necks. -ESAIM Control Optim. Calc. Var. 26, 2020, 76. · Zbl 1459.49029
[43] Li, Q., and M. Torres: Morrey spaces and generalized Cheeger sets. -Adv. Calc. Var. 12:2, 2019, 111-133. · Zbl 1412.49014
[44] Neumayer, R.: A strong form of the quantitative Wulff inequality. -SIAM J. Math. Anal. 48:3, 2016, 1727-1772. · Zbl 1337.49077
[45] Neumayer, R.: A note on strong-form stability for the Sobolev inequality. -Calc. Var. Partial Differential Equations 59:1, 2020, 25. · Zbl 1440.46033
[46] Parini, E.: An introduction to the Cheeger problem. -Surv. Math. Appl. 6, 2011, 9-21. · Zbl 1399.49023
[47] Pratelli, A., and G. Saracco: On the generalized Cheeger problem and an application to 2d strips. -Rev. Mat. Iberoam. 33:1, 2017, 219-237. · Zbl 1365.49041
[48] Saracco, G.: Weighted Cheeger sets are domains of isoperimetry. -Manuscripta Math. 156:3-4, 2018, 371-381. · Zbl 1402.46029
[49] Saracco, G.: A sufficient criterion to determine planar self-Cheeger sets. -J. Convex Anal. 28:3, 2021. · Zbl 1483.49054
[50] Sudakov, V. N., and B. S. Cirel’son: Extremal properties of half-spaces for spherically invariant measures. -Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 41, 1974, 14-24, 165. Received 26 March 2020 • Accepted 2 February 2021 · Zbl 0351.28015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.