×

Hall current effect on MHD mixed convection flow from an inclined continuously stretching surface with blowing/suction and internal heat generation/absorption. (English) Zbl 1167.76381

Summary: Hydromagnetic heat transfer by mixed convection along an inclined continuously stretching surface, with power-law variation in the surface temperature or heat flux, in the presence of Hall current and internal heat generation/absorption has been studied. The surface is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a power-law. Two cases of the temperature boundary conditions were considered at the surface. The governing equations have been transformed into non-similar partial differential equations which have been integrated by the forth-order Runge-Kutta method. The effect of Hall parameter, magnetic parameter, dimensionless blowing/suction parameter, space and temperature dependent internal heat generation/absorption parameters and buoyancy force parameters on the temperature, primary and secondary flow velocity have been studied parametrically. All parameters involved in the problem affect the flow and thermal distributions except the temperature-dependent internal heat generation/absorption in the case of prescribed heat flux (PHF). Numerical values of the local skin-friction and the local Nusselt numbers for various parametric conditions have been tabulated.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
80A20 Heat and mass transfer, heat flow (MSC2010)
76E06 Convection in hydrodynamic stability
Full Text: DOI

References:

[1] Sakiadis, B. C., Am. Inst. Chem. Eng. J., 7, 26 (1961)
[2] Erickson, L. E.; Fan, L. T.; Fox, V. G., Int. Eng. Chem. Fund., 5, 19 (1966)
[3] Tsou, F. K.; Sparrow, E. M.; Goldstein, R. J., Int. J. Heat Mass Transfer, 10, 19 (1967)
[4] Soundalgekar, V. M.; Ramana Murthy, T. V., Wärme-rund-Stoffűbertragung, 14, 91 (1980)
[5] Crane, L., J. Angew. Math. Phys., 21, 645 (1970)
[6] Vleggaar, J., Chem. Eng. Sci., 32, 1517 (1977)
[7] Gupta, P. S.; Gupta, A. S., Can. J. Chem. Eng., 4, 744 (1977)
[8] Dutta, B. K.; Gupta, A. S., Z. Angew. Math. Mech., 68, 231 (1988) · Zbl 0654.76031
[9] Chakabarti, A.; Gupta, A. S., Quart. Appl. Math., 37, 73 (1979) · Zbl 0402.76012
[10] Sparrow, E. M.; Cess, R. D., Int. J. Heat mass Transfer, 3, 267 (1961) · Zbl 0102.41201
[11] Gupta, A. S., J. Appl. Math. Phys. (ZAMP), 13, 324 (1963)
[12] Wilks, G.; Hunt, R., J. Appl. Math. Phys., 35, 34 (1984) · Zbl 0546.76133
[13] Banks, W. H.H., J. Mécanique Théorique et Appliqueé, 2, 375 (1983) · Zbl 0538.76039
[14] Ali, M. E., Int. J. Heat Fluid Flow, 16 (1995), (ZAMP) 35, 34 (1984)
[15] Chiam, T. C., Int. J. Eng. Sci., 33, 429 (1995) · Zbl 0899.76375
[16] Fox, V. G.; Erikson, L. E.; Fan, L. T., AICHE J., 14, 726 (1968)
[17] Elbashbeshy, E. M.A., J. Phys. D: Appl. Phys., 31, 1951 (1998)
[18] Chakabarti, A.; Gupta, A. S., Quart. Appl. Math., 37, 73 (1979) · Zbl 0402.76012
[19] Gupta, P. S.; Gupta, A. S., Can. J. Chem. Eng., 55, 744 (1977)
[20] Ali, M. E., Int. J. Heat Fluid Flow, 16, 280 (1995)
[21] Abo-Eldahab, E. M., Physica Scripta, 63, 29 (2001) · Zbl 1112.76498
[22] Abo-Eldahab, E. M.; El-Aziz, M. A., Physica Scripta, 61, 344 (2000)
[23] Pop, A.; Watanabe, T., Int. J. Eng. Sci., 32, 1903 (1994) · Zbl 0899.76374
[24] Abo-Eldahab, E. M.; El-Aziz, M. A., Int. J. Therm. Sci., 43, 709 (2004)
[25] Jacobi, A. M., J. Heat Transfer, 115, 1058 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.