×

Boundary element solution of the two-dimensional sine-Gordon equation using continuous linear elements. (English) Zbl 1166.65390

Summary: This article studies the boundary element solution of a two-dimensional sine-Gordon (SG) equation by using continuous linear element approximation. Non-linear and in-homogeneous terms are converted to the boundary by the dual reciprocity method and a predictor-corrector scheme is employed to eliminate the non-linearity. The procedure developed in this paper, is applied to various problems involving line and ring solitons considered references [J. Argyris, M. Haase and J. C. Heinrich, Comput. Methods Appl. Mech. Eng. 86, No. 1, 1–26 (1991; Zbl 0762.65073); A. G. Bratsos, ANACM, Appl. Numer. Anal. Comput. Math. 2, No. 2, 189–211 (2005; Zbl 1075.65111); erratum ibid. 2, No. 3, 365 (2005); Numer. Algorithms 43, No. 4, 295–308 (2006; Zbl 1112.65077); J. Comput. Appl. Math. 206, No. 1, 251–277 (2007; Zbl 1117.65126); Math. Comput. Simul. 76, No. 4, 271–282 (2007; Zbl 1135.65358); P. L. Christiansen and P. S. Lomdahl, Physica D: Nonlinear Phenom 2; No. 3, 482–494 (1981); K. Djidjeli, W. G. Price and E. H. Twizell, J. Eng. Math. 29, No. 4, 347–369 (1995; Zbl 0841.65083); M. Dehghan and D. Mirzaei, Comput. Methods Appl. Mech. Eng. 197, No. 6–8, 476–486 (2008)]. Using continuous linear elements approximation produces more accurate results than constant ones. By using this approach all cases associated to SG equation, which exist in literature, are investigated.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

SERBA
Full Text: DOI

References:

[1] Aliabadi, M. H., The boundary element method, applications in solids and structures, vol. 2 (2002), Wiley: Wiley New York · Zbl 0994.74003
[2] Ang, W. T., A beginner’s course in boundary element method (2007), Universal Publisher
[3] Brebbia, C. A.; Walker, S., Boundary element technique in engineering (1980), Newnes-Butterworths: Newnes-Butterworths London · Zbl 0444.73065
[4] Brebbia, C. A.; Telles, J. C.F.; Wrobel, L. C., Boundary element techniques (1984), Springer: Springer Berlin, Heidelberg, New York, Tokyo · Zbl 0556.73086
[5] Paris, F.; Canas, J., Boundary element method: fundamental and applications (1997), Oxford University Press: Oxford University Press Oxford · Zbl 0868.73083
[6] Ramachandran, P. A., Boundary element methods in transport phenomena (1994), Computational Mechanics Publication: Computational Mechanics Publication Southampton, Boston · Zbl 0865.65081
[7] Wrobel, L. C., The boundary element method, applications in thermo-fluids and acoustics, vol. 1 (2001), Wiley: Wiley New York
[8] Partridge, P. W., Towards criteria for selecting approximation functions in the dual reciprocity method, Eng Anal Bound Elem, 24, 519-529 (2000) · Zbl 0968.65097
[9] Nardini, D.; Brebbia, C. A., A new approach for free vibration analysis using boundary elements, (Brebbia, C. A., Boundary element methods in engineering (1992), Springer: Springer Berlin), 312-326 · Zbl 0541.73104
[10] Brebbia, C. A.; Nardini, D., Dynamic analysis in solid mechanics by an alternative boundary element procedure, Int J Soil Dyn Earthquake Eng, 2, 228-233 (1983)
[11] Partridge, P. W.; Brebbia, C. A., The dual reciprocity boundary element method for the Helmholtz equation, (Brebbia, C. A.; Choudouet-Miranda, A., Proceedings of the international boundary elements symposium (1990), Computational Mechanics Publications/Springer: Computational Mechanics Publications/Springer Berlin), 543-555 · Zbl 0712.73094
[12] Ang, W. T., The two-dimensional reaction-diffusion Brusselator system: a dual-reciprocity boundary element solution, Eng Anal Bound Elem, 27, 897-903 (2003) · Zbl 1060.76599
[13] Ang, W. T.; Ang, K. C., A dual reciprocity boundary element solution of a generalized nonlinear Schrödinger equation, Numer Meth Part Diff Eq, 20, 843-854 (2004) · Zbl 1062.65109
[14] Krishna, K. M.; Tanaka, M., Dual reciprocity boundary element analysis of nonlinear diffusion: temporal discretization, Eng Anal Bound Elem, 23, 419-433 (1999) · Zbl 0955.74074
[15] Krishna, K. M.; Tanaka, M., Dual reciprocity boundary element analysis of inverse heat conduction problems, Comput Meth Appl Mech Eng, 190, 5283-5295 (2001) · Zbl 0988.80005
[16] Partridge, P. W.; Sensale, B., The method of fundamental solutions with dual reciprocity for diffusion and diffusion-convection using subdomains, Eng Anal Bound Elem, 24, 633-641 (2000) · Zbl 1005.76064
[17] Tanaka, M.; Matsumoto, T.; Takakuwa, S., Dual reciprocity BEM for time-stepping approach to the transient heat conduction problem in nonlinear materials, Comput Meth Appl Mech Eng, 195, 4953-4961 (2006) · Zbl 1126.80008
[18] Wrobel, L. C.; Brebbia, C. A., The dual reciprocity boundary element formulation for nonlinear diffusion problems, Comput Meth Appl Mech Eng, 65, 147-164 (1987) · Zbl 0612.76094
[19] Argyris, J.; Haase, M.; Heinrich, J. C., Finite element approximation to two-dimensional sine-Gordon solitons, Comput Meth Appl Mech Eng, 86, 1-26 (1991) · Zbl 0762.65073
[20] Bratsos, A. G., An explicit numerical scheme for the sine-Gordon equation in 2+1 dimensions, Appl Numer Anal Comput Math, 2, 2, 189-211 (2005) · Zbl 1075.65111
[21] Bratsos, A. G., A modified predictor-corrector scheme for the two-dimensional sine-Gordon equation, Numer Algorithms, 43, 295-308 (2006) · Zbl 1112.65077
[22] Bratsos, A. G., The solution of the two-dimensional sine-Gordon equation using the method of lines, J Comput Appl Math, 206, 251-277 (2007) · Zbl 1117.65126
[23] Bratsos, A. G., A third order numerical scheme for the two-dimensional sine-Gordon equation, Math Comput Simulat, 76, 271-278 (2007) · Zbl 1135.65358
[24] Christiansen, P. L.; Lomdahl, P. S., Numerical solutions of 2+1 dimensional sine-Gordon solitons, Physica D: Nonlinear Phenom, 2, 3, 482-494 (1981) · Zbl 1194.65122
[25] Djidjeli, K.; Price, W. G.; Twizell, E. H., Numerical solutions of a damped sine-Gordon equation in two space variables, J Eng Math, 29, 347-369 (1995) · Zbl 0841.65083
[26] Hirota, R., Exact three-soliton solution of the two-dimensional sine-Gordon equation, J Phys Soc Jpn, 35, 1566 (1973)
[27] Christiansen, P. L.; Olsen, O. H., Return effect for rotationally symmetric solitary wave solutions to the sine-Gordon equation, Phys Lett A, 68, 2, 185-188 (1978)
[28] Zagrodzinsky, J., Particular solutions of the sine-Gordon equation in 2+1 dimensions, Phys Lett A, 72, 284-286 (1979)
[29] Kaliappan, P.; Lakshmanan, M., Kadomtsev-Petviashvili and two-dimensional sine-Gordon equations: reduction to Painlevè transcendents, J Phys A: Math Gen, 12, L249-L252 (1979) · Zbl 0425.35080
[30] Leibbrandt, G., New exact solutions of the classical sine-Gordon equation in 2+1 and 3+1 dimensions, Phys Rev Lett, 41, 435-438 (1978)
[31] Guo, B. Y.; Pascual, P. J.; Rodriguez, M. J.; Vázquez, L., Numerical solution of the sine-Gordon equation, Appl Math Comput, 18, 1-14 (1986) · Zbl 0622.65131
[32] Sheng, Q.; Q . M. Khaliq, A.; Voss, D. A., Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme, Math Comput Simulat, 68, 355-373 (2005) · Zbl 1073.65095
[33] Dehghan, M.; Mirzaei, D., The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation, Comput Meth Appl Mech Eng, 197, 476-486 (2008) · Zbl 1169.76401
[34] Bogolyubskil˘, I. L.; Makhankov, V. G., Lifetime of pulsating solitons in certain classical models, JETP Lett, 24, 1, 12-14 (1976)
[35] Bogolyubskil˘, I. L., Oscillating particle-like solutions of the nonlinear Klein-Gordon equation, JETP Lett, 24, 10, 535-538 (1976)
[36] Christiansen, P. L.; Grønbech-Jensen, N.; Lomdahl, P. S.; Malomed, B. A., Oscillations of eccentric Pulsons, Phys Scripta, 55, 131-134 (1997)
[37] Malomed, B. A., Decay of shrinking solitons in multidimensional sine-Gordon equation, Physica D, 24, 155-171 (1987) · Zbl 0634.35077
[38] Malomed, B. A., Dynamic of quasi-one-dimensional kinks in the two-dimensional sine-Gordon model, Physica D, 52, 157-170 (1991) · Zbl 0742.35060
[39] Maslov, E. M., Dynamics of rotationally symmetric solitons in near-SG field model with applications to large-area Josephson junctions and ferromagnets, Physica D, 15, 433-443 (1985) · Zbl 0583.35088
[40] Maslov, E. M., Rotationally symmetric SG oscillator with tunable frequency, Phys Lett A, 131, 6, 364-367 (1988)
[41] Dehghan, M.; Shokri, A., A numerical method for KdV equation using collocation and radial basis functions, Nonlinear Dyn, 50, 111-120 (2007) · Zbl 1185.76832
[42] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simulat, 71, 16-30 (2006) · Zbl 1089.65085
[43] Dehghan, M., A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numer Meth Partial Differ Equations, 22, 220-257 (2006) · Zbl 1084.65099
[44] Dehghan, M., The one-dimensional heat equation subject to a boundary integral specification, Chaos, Soliton Fract, 32, 661-675 (2007) · Zbl 1139.35352
[45] Shakeri, F.; Dehghan, M., Numerical solution of the Klein-Gordon equation via He’s variational iteration method, Nonlinear Dyn, 51, 89-97 (2008) · Zbl 1179.81064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.