×

A third order numerical scheme for the two-dimensional sine-Gordon equation. (English) Zbl 1135.65358

Summary: A rational approximant of third order, which is applied to a three-time level recurrence relation, is used to transform the two-dimensional sine-Gordon (SG) equation into a second-order initial-value problem. The resulting nonlinear finite-difference scheme, which is analyzed for stability, is solved by an appropriate predictor-corrector (P-C) scheme, in which the predictor is an explicit one of second order. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behavior of the proposed P-C/MPC schemes is tested numerically on the line and ring solitons known from the bibliography, regarding SG equation and conclusions for both the mentioned schemes regarding the undamped and the damped problem are derived.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Ablowitz, M. J.; Segur, H., Solitons and the inverse scattering transforms (1981), SIAM: SIAM Philadelphia · Zbl 0299.35076
[2] Ablowitz, M. J.; Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering, Lond. Math. Soc. Lect. Note Ser., 149 (1991) · Zbl 0762.35001
[3] Argyris, J.; Haase, M.; Heinrich, J. C., Finite element approximation to two-dimensional sine-Gordon solitons, Comput. Methods Appl. Mech. Eng., 86, 1-26 (1991) · Zbl 0762.65073
[4] Bogolyubskii˘, I. L.; Makhankov, V. G., Lifetime of pulsating solitons in certain classical models, JETP Lett., 24, 1, 12-14 (1976)
[5] Bogolyubskii˘, I. L., Oscillating particle-like solutions of the nonlinear Klein-Gordon equation, JETP Lett., 24, 10, 535-538 (1976)
[6] Bogolyubskii˘, I. L., Dynamics of spherically symmetrical pulsons of large amplitude, JETP Lett., 25, 2, 107-110 (1977)
[7] Bratsos, A. G., An explicit numerical scheme for the sine-Gordon equation in \(2 + 1\) dimensions, Appl. Numer. Anal. Comput. Math., 2, 2, 189-211 (2005) · Zbl 1075.65111
[8] Bratsos, A. G., The solution of the two-dimensional sine-Gordon equation using the method of lines, J. Comput. Appl. Math., 206, 251-277 (2007) · Zbl 1117.65126
[9] Christiansen, P. L.; Olsen, O. H., Return effect for rotationally symmetric solitary wave solutions to the sine-Gordon equation, Phys. Lett., 68A, 2, 185-188 (1978)
[10] Christiansen, P. L.; Olsen, O. H., Ring-shaped quasi-soliton solutions to the two and three-dimensional sine-Gordon equations, Phys. Scripta, 20, 531-538 (1979) · Zbl 1063.81529
[11] Christiansen, P. L.; Lomdahl, P. S., Numerical solutions of \(2 + 1\) dimensional sine-Gordon solitons, Physica, 2D, 482-494 (1981) · Zbl 1194.65122
[12] Djidjeli, K.; Price, W. G.; Twizell, E. H., Numerical solutions of a damped sine-Gordon equation in two space variables, J. Eng. Math., 29, 347-369 (1995) · Zbl 0841.65083
[13] Goursat, E., Le problème de Bäcklund, Mem. Sci. Math. Fasc., vol. 6 (1925), Gauthier-Villars: Gauthier-Villars Paris · JFM 51.0352.02
[14] Guo, B.-Y.; Pascual, P. J.; Rodriguez, M. J.; Vázquez, L., Numerical solution of the sine-Gordon equation, Appl. Math. Comput., 18, 1-14 (1986) · Zbl 0622.65131
[15] Hirota, R., Exact three-soliton solution of the two-dimensional sine-Gordon equation, J. Phys. Soc. Jpn., 35, 1566 (1973)
[16] Kaliappan, P.; Lakshmanan, M., Kadomtsev-Petviashvili and two-dimensional sine-Gordon equations: reduction to Painlevè transcendents, J. Phys. A: Math. Gen., 12, L249 (1979) · Zbl 0425.35080
[17] Kodama, Y.; Ablowitz, M. J., Transverse instability of breathers in resonant media, J. Math. Phys., 21, 4, 928-931 (1980)
[18] Korteweg, D. J.; de Vries, G., On the change of form of long-waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39, 5, 422-443 (1995) · JFM 26.0881.02
[19] Lamb, G. L., Elements of Soliton Theory (1980), Wiley · Zbl 0445.35001
[20] Leibbrandt, G., New exact solutions of the classical sine-Gordon equation in \(2 + 1\) and \(3 + 1\) dimensions, Phys. Rev. Lett., 41, 435-438 (1978)
[21] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 7, 650-654 (1992) · Zbl 1219.35246
[22] Miura, R. M.; Dold, A.; Eckman, B., Bäcklund Transformations, vol. 515 in Lecture Notes in Mathematics (1976), Springer-Verlag: Springer-Verlag Berlin · Zbl 0317.00006
[23] Nakajima, K.; Onodera, Y.; Nakamura, T.; Sato, R., Numerical analysis of vortex motion on Josephson structures, J. Appl. Phys., 45, 9, 4095-4099 (1974)
[24] Olver, P. J., Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107 (1986), Springer: Springer Berlin · Zbl 0588.22001
[25] Russell J. Scott, Report of the Committee on Waves, Report of the Seventh Meeting of the British Association for the Advancement of Science, Liverpool, 1838, pp. 417-496. Russell J. Scott, Report on Waves, Report of the 14th Meeting of the British Association for the Advancement of Science, John Murray, London, 1844, pp. 311-390.; Russell J. Scott, Report of the Committee on Waves, Report of the Seventh Meeting of the British Association for the Advancement of Science, Liverpool, 1838, pp. 417-496. Russell J. Scott, Report on Waves, Report of the 14th Meeting of the British Association for the Advancement of Science, John Murray, London, 1844, pp. 311-390.
[26] Wahlquist, H.; Estabrook, F. B., Bäcklund transformation for solutions of the Korteweg-deVries equation, Phys. Rev. Lett., 31, 1386-1390 (1973)
[27] Zabusky, N. J.; Kruskal, M. D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-243 (1965) · Zbl 1201.35174
[28] Zagrodzinsky, J., Particular solutions of the sine-Gordon equation in \(2 + 1\) dimensions, Phys. Lett., 72A, 284-286 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.