×

Rational points in periodic analytic sets and the Manin-Mumford conjecture. (English) Zbl 1164.11029

Let \(A\) be an abelian variety and \(X\) an algebraic subvariety of \(A\), both defined over a number field. Denote by \(A_{\mathrm{tor}}\) the group of torsion points of \(A\). Then the Zariski closure of \(X\cap A_{\mathrm{tor}}\) is contained in a finite union of translates of abelian subvarieties by torsion points. In particular, if \(X\) is not contained in any translate of an abelian subvariety of dimension \(>0\) by a torsion point, then \(X\cap A_{\mathrm{tor}}\) is finite. These statements are due to M. Raynaud [Invent. Math. 74, 207–233 (1983; Zbl 0564.14020)]. In the special case when \(X\) is a curve of genus \(\geq 2\) and \(A\) its Jacobian, they solve the original Manin–Mumford Conjecture. The authors give a list of different proofs of Raynaud’s Theorem and produce a new completely different proof of it. They combine an upper bound for the number of rational points on a transcendental subvariety of a real torus, due to the work of E. Bombieri and J. Pila [Duke Math. J. 59, No. 2, 337–357 (1989; Zbl 0718.11048)], J. Pila [Q. J. Math. 55, 207–223 (2004; Zbl 1111.32004)], J. Pila and A.J. Wilkie [Duke Math. J. 133, No. 3, 591–616 (2006; Zbl 1217.11066)], with a lower bound for the degree of torsion points due to D. W. Masser [Compos. Math. 53, 153–170 (1984; Zbl 0551.14015)] .
The proof involves a number of auxiliary results of independent interest, including a study of semi algebraic curves in \({\mathbb {C}}^g\) lying on the inverse image of \(X\) under the analytic uniformization \({\mathbb {C}}^g\rightarrow A\) of \(A\).

MSC:

11J95 Results involving abelian varieties
14K20 Analytic theory of abelian varieties; abelian integrals and differentials
11D45 Counting solutions of Diophantine equations

References:

[1] I. ALIEV - C. SMYTH, Solving equations in roots of unity. arXiv:0704.1747v3 [math.NT]. · Zbl 1297.11068 · doi:10.1515/form.2011.087
[2] J. AX, On Schanuel’s conjectures. Ann. of Math. (2) 93 (1971), 252-268. · Zbl 0232.10026 · doi:10.2307/1970774
[3] M. BAKER - K. RIBET, Galois theory and torsion points on curves. J. Théor. Nombres Bordeaux 15 (2003), 11-32. · Zbl 1065.11045 · doi:10.5802/jtnb.384
[4] W. BARTH, Fortsetzung meromorpher Funktionen in Tori und komplex-projektiven Räumen. Invent. Math. 5 (1968), 42-62. · Zbl 0159.37602 · doi:10.1007/BF01404537
[5] F. BEUKERS - C. SMYTH, Cyclotomic points on curves. In: Number Theory for the Millennium (Urbana, Il, 2000), I, A K Peters, 2002, 67-85. · Zbl 1029.11009
[6] E. BIERSTONE - P. MILMAN, Semianalytic and subanalytic sets. Publ. Math. IHES 67 (1988), 5-42. · Zbl 0674.32002 · doi:10.1007/BF02699126
[7] E. BOMBIERI - J. PILA, The number of integral points on arcs and ovals. Duke Math. J. 59 (1989), 337-357. · Zbl 0718.11048 · doi:10.1215/S0012-7094-89-05915-2
[8] E. BOMBIERI - U. ZANNIER, Heights of algebraic points on subvarieties of abelian varieties. Ann. Scuola Norm. Sup. Pisa (4) 23 (1996), 779-792. · Zbl 0897.11020
[9] L. VAN DEN DRIES, A generalization of the Tarski-Seidenberg theorem and some non-definability results. Bull. Amer. Math. Soc. 15 (1986), 189-193. · Zbl 0612.03008 · doi:10.1090/S0273-0979-1986-15468-6
[10] L. VAN DEN DRIES, Tame Topology and o-Minimal Structures. Cambridge Univ. Press, 1998. · Zbl 0953.03045
[11] A. GABRIELOV, Projections of semianalytic sets. Funktsional. Anal. i Prilozhen. 2 (1968), no. 4, 18-30 (in Russian); English transl.: Functional Anal. Appl. 2 (1968), 282-291.
[12] E. HRUSHOVSKI, The Manin-Mumford conjecture and the model theory of difference fields, Ann. Pure. Appl. Logic 112 (2001), 43-115. · Zbl 0987.03036 · doi:10.1016/S0168-0072(01)00096-3
[13] S. LANG, Fundamentals of Diophantine Geometry. Springer, 1983. · Zbl 0528.14013
[14] D. MASSER, Small values of the quadratic part of the Néron-Tate height on an abelian variety. Compos. Math. 53 (1984), 153-170. · Zbl 0551.14015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.