×

Solving algebraic equations in roots of unity. (English) Zbl 1297.11068

Summary: This paper is devoted to finding solutions of polynomial equations in roots of unity. It was conjectured by S. Lang and proved by M. Laurent [Invent. Math. 78, 299–327 (1984; Zbl 0554.10009)] that all such solutions can be described in terms of a finite number of parametric families called maximal torsion cosets. We obtain new explicit upper bounds for the number of maximal torsion cosets on an algebraic subvariety of the complex algebraic \(n\)-torus \(\mathbb G^n_{\text m}\). In contrast to earlier work that gives the bounds of polynomial growth in the maximum total degree of defining polynomials, the proofs of our results are constructive. This allows us to obtain a new algorithm for determining maximal torsion cosets on an algebraic subvariety of \(\mathbb G^n_{\text m}\).

MSC:

11G35 Varieties over global fields
11R18 Cyclotomic extensions
13P15 Solving polynomial systems; resultants

Citations:

Zbl 0554.10009

References:

[1] DOI: 10.1007/s00605-004-0267-y · Zbl 1117.11036 · doi:10.1007/s00605-004-0267-y
[2] DOI: 10.1112/S0010437X06002004 · Zbl 1116.11045 · doi:10.1112/S0010437X06002004
[3] DOI: 10.1007/BF01393823 · Zbl 0533.10030 · doi:10.1007/BF01393823
[4] Bombieri E., Internat. Math. Res. Notices 1995 (7) pp 333– · Zbl 0848.11030 · doi:10.1155/S1073792895000250
[5] Conway J. H., Acta Arith. 30 pp 229– (1976)
[6] David S., Ann. Scuola Norm. Sup. Pisa IV 28 pp 489– (1999)
[7] DOI: 10.1007/s006050050009 · Zbl 0953.11009 · doi:10.1007/s006050050009
[8] Evertse J-H., Acta Arith. 89 pp 45– (1999)
[9] DOI: 10.1090/S0025-5718-03-01589-8 · Zbl 1099.13519 · doi:10.1090/S0025-5718-03-01589-8
[10] DOI: 10.1007/BF01388597 · Zbl 0554.10009 · doi:10.1007/BF01388597
[11] Liardet P., C. R. Acad. Sci. Paris Sér. A 279 pp 435– (1974)
[12] DOI: 10.1112/S0025579300005210 · Zbl 0138.03102 · doi:10.1112/S0025579300005210
[13] DOI: 10.1112/S0024609304003790 · Zbl 1166.11349 · doi:10.1112/S0024609304003790
[14] DOI: 10.1007/BF01241125 · Zbl 0848.14022 · doi:10.1007/BF01241125
[15] DOI: 10.1023/A:1020982431028 · Zbl 1101.14030 · doi:10.1023/A:1020982431028
[16] Ruppert W. M., J. Reine Angew. Math. 435 pp 119– (1993) · Zbl 0763.14008 · doi:10.1515/crll.1993.435.119
[17] DOI: 10.1007/BF02937506 · Zbl 0843.11027 · doi:10.1007/BF02937506
[18] Schlickewei H. P., Acta Arith. 76 pp 99– (1996)
[19] DOI: 10.2307/2152886 · Zbl 0861.14018 · doi:10.2307/2152886
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.