×

Wave propagation in media with singular memory. (English) Zbl 1011.74033

Summary: Constitutive equations based on physical models of viscous and porous media often involve singular memory effects. Solutions of the corresponding dynamic problems are infinitely smooth. Here we present two complementary methods of study of singular memory in hyperbolic equations, and apply these methods to a poroacoustic model of sound propagation in a rigid air-saturated porous medium. Numerical methods are briefly discussed.

MSC:

74J10 Bulk waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations (1998), Academic Press: Academic Press San Diego · Zbl 0922.45001
[2] Wiener, N., The Fourier Integral and Certain of Its Applications (1933), Cambridge University Press: Cambridge University Press Cambridge · JFM 59.0416.01
[3] Doetsch, G., Einführung in Theorie und Anwendung der Laplace Transformation (1958), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0202.12301
[4] Widder, D. V., The Laplace Transform (1946), Princeton University Press: Princeton University Press Princeton · Zbl 0060.24801
[5] Christensen, R. M., Theory of Viscoelasticity: An Introduction (1971), Academic Press: Academic Press New York
[6] Fabrizio, M.; Morro, A., Mathematical Problems in Linear Viscoelasticity (1992), SIAM: SIAM Philadelphia, PA · Zbl 0753.73003
[7] Kneser, H. O., Zur Dispersionstheorie des Schalles, Ann. Physik, 6, 761-776 (1931) · Zbl 0003.28101
[8] Coleman, B. D.; Gurtin, M. E., Thermodynamics with internal state variables, J. Chem. Phys., 47, 597-613 (1967)
[9] Rabotnov, Yu. N., Elements of Hereditary Solid Mechanics (1980), Mir Publ: Mir Publ Moscow · Zbl 0515.73026
[10] Boltzmann, L., Zur Theorie der elastischen Nachwirkung, Annalen der Physik und Chemie, Ergänzungsband, 7, 624-654 (1876) · JFM 08.0639.01
[11] Nutting, P. G., Deformation in relation to time, pressure and temperature, J. Franklin Inst., 242, 449-458 (1946)
[12] Gemant, A., On fractional differentials, Phil. Mag., 25, 540-549 (1938) · JFM 64.0401.02
[13] Scott Blair, G. W.; Reiner, M., The rheological law underlying the Nutting equation, Appl. Sci. Res., A2, 225-234 (1950) · Zbl 0045.12706
[14] Koeller, R. C., Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mechanics, 51, 299-307 (1984) · Zbl 0544.73052
[15] Koeller, R. C., Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics, Acta Mechanica, 58, 251-264 (1986) · Zbl 0578.73040
[16] Szabo, T. L., Time domain wave equations for lossy media obeying a frequency power law, J. Acoust. Soc. Am., 96, 491-500 (1994)
[17] Szabo, T. L., Causal theories and data for acoustic attenuation obeying a frequency power law, J. Acoust. Soc. Am., 97, 14-24 (1995)
[18] Ochmann, M.; Makarov, S., Representation of absorption of non-linear waves by fractional derivatives, J. Acoust. Soc. Am., 94, 3392-3399 (1993)
[19] A. Hanyga and V.E. Rok, Wave propagation in micro-heterogeneous porous media: A model based on an integrodifferential equation, J. Acoust. Soc. Am. (to appear).; A. Hanyga and V.E. Rok, Wave propagation in micro-heterogeneous porous media: A model based on an integrodifferential equation, J. Acoust. Soc. Am. (to appear).
[20] Slonimsky, G. L., Laws of mechanical relaxation processes in polymers, J. of Polymer Science, C16, 1667-1672 (1967)
[21] Friedrich, C., Mechanical stress relaxation in polymers: Fractional integral order vs. fractional differential order, J. Non-Newtonian Fluid Mech., 46, 307-314 (1993) · Zbl 0775.76005
[22] Friedrich, C., Rheological material functions for associating comb-shaped or H-shaped polymers: A fractional calculus approach, Phil. Mag. Lett., 66, 287-292 (1992)
[23] Friedrich, C., Linear viscoelastic behavior of branched polybutadiene: A fractional calculus approach, Acta Polymerica, 46, 385-390 (1995)
[24] Friedrich, C.; Braun, H., Linear viscoelastic behavior of complex polymeric materials: A fractional model representation, Colloid and Polymer Science, 172, 1536-1546 (1994)
[25] Stiassnie, M., On the applications of fractional calculus for the formulation of viscoelastic models, Appl. Math. Modelling, 3, 300-302 (1979) · Zbl 0419.73038
[26] Nonnenmacher, T. F.; Glöckle, W. G., A fractional model for mechanical stress relaxation, Phil. Mag. Lett., 64, 85-93 (1991)
[27] Glöckle, W. G.; Nonnenmacher, T. F., Fractional integral operators and Fox functions in the theory of viscoelasticity, Macromolecules, 24, 6424-6434 (1991)
[28] Glöckle, W. G.; Nonnenmacher, T. F., Fractional relaxation and the time-temperature superposition principle, Rheologica Acta, 33, 337-343 (1994)
[29] Curtiss, C. F.; Bird, R. B., A kinetic theory for polymer melts, I. The equation for the single-link orientational distribution function, J. Chem. Phys., 74, 2016-2025 (1981)
[30] Widder, D. V., An Introduction to Transformation Theory (1971), Academic Press: Academic Press New York · Zbl 0219.44001
[31] Mandelbrot, S., Dirichlet Series. Principles and Methods (1972), D. Reidel Publ. Co: D. Reidel Publ. Co Dordrecht · Zbl 0241.30010
[32] Kroller, M.; Propst, G., On the truncation of the infinite sum of exponentials in a memory kernel of the linear wave equation, Z. Angew. Math. Mech., 79, 603-613 (1999) · Zbl 0930.35100
[33] Kelbert, M.; Sazonov, I., Pulses and Other Wave Processes in Fluids: An Asymptotical Approach to Initial Problems (1996), Kluwer Academic: Kluwer Academic Dordrecht
[34] Giona, M.; Gerbelli, S.; Roman, H. E., Fractional diffusion equation and relaxation in complex viscoelastic materials, Physica A, 191, 449-453 (1992)
[35] Blackstock, D. T., Nonlinear acoustics (theoretical), (Gray, D., American Institute of Physics Handbook (1972), MacGraw-Hill: MacGraw-Hill New York) · Zbl 0744.73019
[36] Polack, J.-D., Time domain solution of Kirchhoff’s equation for sound propagation in viscothermal gases: A diffusion process, J. Acoustique, 4, 47-67 (1991)
[37] Zwikker, C.; Kosten, C. W., Sound Absorbing Materials (1949), Elsevier: Elsevier New York
[38] Attenborough, K., Acoustical characteristics of rigid fibrous absorbents and granular materials, J. Acoust. Soc. Am., 73, 785-799 (1983) · Zbl 0516.73117
[39] Bagley, R. L.; Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelaticity, J. of Rheology, 27, 201-210 (1983) · Zbl 0515.76012
[40] Cole, K. S.; Cole, R. H., Dispersion and absorption in dielectrics, I: Alternating current characteristics, J. Chem. Phys., 9, 341-351 (1941)
[41] Rabotnov, Yu. N., Creep Problems in Structural Elements (1969), North Holland: North Holland Amsterdam · Zbl 0184.51801
[42] Buchen, P. W.; Mainardi, F., Asymptotic expansions for transient viscoelastic waves, J. de Mécanique, 14, 597-608 (1975) · Zbl 0351.73033
[43] Renardy, M., Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids, Rheol. Acta, 21, 251-254 (1982) · Zbl 0488.76002
[44] Hrusa, W.; Renardy, M., On wave propagation in linear viscoelasticity, Quart. Appl. Math., 43, 237-253 (1985) · Zbl 0571.73026
[45] Hrusa, W.; Renardy, M., A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal., 19, 257-269 (1988) · Zbl 0644.73041
[46] Renardy, M.; Hrusa, W. J.; Nohel, J. A., Mathematical Problems in Viscoelasticity (1987), Longman Scientific & Technical: Longman Scientific & Technical Essex · Zbl 0719.73013
[47] Pipkin, A. C., (Lectures on Viscoelasticity Theory (1986), Springer-Verlag) · Zbl 0237.73022
[48] Pipkin, A. C., Asymptotic behaviour of viscoelastic waves, Quart. J. Mech. Appl. Math., 41, 51-64 (1988) · Zbl 0631.73028
[49] Kreis, A.; Pipkin, A. C., Viscoelastic pulse propagation and stable probability distributions, Quart. Appl. Math., 44, 353-360 (1986) · Zbl 0625.73037
[50] Kolsky, H., The propagation of stress pulses in viscoelastic solids, Phil. Mag., 2, 8, 693-710 (1956)
[51] Prüss, J., Evolutionary Integral Equations (1993), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0793.45014
[52] Buckingham, M. J., Theory of acoustic attenuation, dispersion and pulse propagation in unconsolidated granulated materials including marine sediments, J. Acoust. Soc. Am., 102, 2579-2596 (1997)
[53] Buckingham, M. J., Theory of compressional and shear waves in fluidlike marine sediments, J. Acoust. Soc. Am., 103, 288-299 (1998)
[54] Gel’fand, I. M.; Shilov, G. E., Generalized Functions, I (1964), Academic Press: Academic Press New York · Zbl 0115.33101
[55] Abramowitz, M.; Stegun, I., Mathematical Tables (1970), Dover: Dover New York
[56] A. Hanyga and M. Seredyńska, Asymptotic wavefront expansions in hereditary media with singular memory kernels, Quart. Appl. Math. (to appear).; A. Hanyga and M. Seredyńska, Asymptotic wavefront expansions in hereditary media with singular memory kernels, Quart. Appl. Math. (to appear).
[57] Feller, W., Introduction to Probability. Theory and Its Applications, 2 (1971), Wiley: Wiley New York · Zbl 0219.60003
[58] Samorodnitsky, G.; Taqqu, M. S., Stable Non-Gaussian Random Processes (1994), Chapman & Hall: Chapman & Hall New York · Zbl 0925.60027
[59] Hanyga, A.; Seredyńska, M., Asymptotic ray theory in poro- and viscoelastic media, Wave Motion, 30, 175-195 (1999) · Zbl 1067.74528
[60] Matignon, D.; d’Andréa Novel, B., Spectral and time-domain consequences of an integro-differential equation perturbation of the wave equation, (Mathematical and Numerical Aspects of Wave Propagation (1995), SIAM: SIAM Philadelphia, PA), 769-771 · Zbl 0875.35066
[61] Lokshin, A. A.; Rok, V. E., Fundamental solutions of the wave equation with delayed time, Doklady AN SSSR, 239, 1305-1308 (1978) · Zbl 0412.73037
[62] Lokshin, A. A.; Rok, V. E., Automodel solutions of wave equations with time lag, Russian Math. Surveys, 33, 243-244 (1978) · Zbl 0426.35064
[63] Dautray, R.; Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, 5 (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0755.35001
[64] Lokshin, A. A.; Suvorova, Yu. V., Mathematical Theory of Wave Propagation in Media with Memory (1982), Moscow University Publ: Moscow University Publ Moscow, (in Russian) · Zbl 0494.73025
[65] Hanyga, A.; Seredyńska, M., Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media, I: Forward modeling, Geophys. J. Int., 137, 319-335 (1999)
[66] Paley, R. E.A. C.; Wiener, N., Fourier Transforms in the Complex Domain (1934), American Mathematica Society: American Mathematica Society New York · Zbl 0008.15203
[67] Schwartz, L., Transformation de Laplace des distributions, Comm. Sém. Math. Univ. Lund, 73-81 (1952), tome suppl. dédié à M. Riesz
[68] Hörmander, L., The Analysis of Linear Partial Differential Operators (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0521.35001
[69] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness (1975), Academic Press: Academic Press New York · Zbl 0308.47002
[70] Mainardi, F., Fractional calculus: Some basic problems, Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer Wien, CISM Courses and Lectures, No. 378 · Zbl 0917.73004
[71] Courant, R., Partial Differential Equations (1962), Interscience: Interscience New York · Zbl 0099.29504
[72] Hanyga, A., Simple memory models of attenuation in complex viscoporous media, Proceedings of the \(1^{st}\) Canadian Conference on Nonlinear Solid Mechanics, 2, 420-436 (1999), Victoria, BC, June 16-20, 1999
[73] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1993), Gordon and Breach: Gordon and Breach Amsterdam · Zbl 0818.26003
[74] Prüss, J., (Regularity and Integrability of Resolvents of Linear Volterra Equations (1989), Longman Science: Longman Science Harlow, Essex), 339-367 · Zbl 0675.45020
[75] Desch, W.; Grimmer, R., Smoothing properties of linear Volterra integrodifferential equations, SIAM J. Math. Anal., 20, 116-132 (1989) · Zbl 0681.45008
[76] Desch, W.; Grimmer, R., Singular relaxation moduli and smoothing in three-dimensional viscoelasticity, Trans. Amer. Math. Soc., 314, 381-404 (1989) · Zbl 0672.73039
[77] Stinson, M. R., The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-section, J. Acoust. Soc. Am., 89, 550-558 (1991)
[78] Stinson, M. R.; Champoux, Y., Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries, J. Acoust. Soc. Am., 91, 685-695 (1992)
[79] Champoux, Y.; Stinson, M. R., On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors, J. Acoust. Soc. Am., 92, 1120-1131 (1992)
[80] Allard, J.-F.; Champoux, Y., New empirical equations for sound propagation in rigid frame fibrous materials, J. Acoust. Soc. Am., 91, 3346-3353 (1992)
[81] Wilson, D. K., Relaxation-matched modelling of propagation through porous media, including fractal pore structure, J. Acoust. Soc. Am., 94, 1136-1145 (1992)
[82] Wilson, D. K., Simple, relaxational models for the acoustical properties of porous media, Applied Acoustics, 50, 171-188 (1997)
[83] Rzhanitsyn, A. R., Theory of Creep (1968), Stroiizdat: Stroiizdat Moscow, (in Russian)
[84] Bagley, R. L.; Torvik, P. J., On the fractional calculus model of viscoelastic behavior, J. of Rheology, 30, 133-155 (1986) · Zbl 0613.73034
[85] Gripenberg, G.; Londen, S. O.; Staffans, O. J., Volterra Integral and Functional Equations (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0695.45002
[86] Gorenflo, R., Fractional Calculus: Some Numerical Methods, 38 (1997), Springer: Springer Wien, CISM Courses and Lectures
[87] Lubich, Ch., Discretized fractional calculus, SIAM J. Math. Anal., 17, 704-719 (1986) · Zbl 0624.65015
[88] Lubich, Ch., Convolution quadrature and discretized fractional calculus, I-II, Numer. Math., 52, 129-425 (1988) · Zbl 0643.65094
[89] Hanyga, A.; Carcione, J. M., Numerical solutions of a poro-acoustic wave equation with generalized fractional integral operators, Proc. of the Intl. SIAM/INRIA Conf. in Santiago de Compostela (2000), (to appear) · Zbl 0990.74079
[90] Luchko, Yu.; Gorenflo, R., The initial-value problem for some fractional differential equations with the caputo derivatives (1998), Preprint http://www.math-fu.berlin.de/publ/preprints/1998 · Zbl 0940.45001
[91] Berg, C.; Forst, G., Potential Theory on Locally Compact Abelian Groups (1975), Springer-Verlag · Zbl 0308.31001
[92] Clément, Ph.; Prüss, J., Completely positive measures and Feller semigroups, Math. Ann., 287, 73-105 (1990) · Zbl 0717.47013
[93] Sowa, M., Cosine operator functions, Dissertationes Math. (Rozprawy Mat.), 49, 1-46 (1966) · Zbl 0156.15404
[94] Da Prato, G.; Giusti, E., Una caratterizzazione dei generatori di funzioni coseno astratte, Boll. Un. Mat. Ital., 22, 357-362 (1967) · Zbl 0186.47702
[95] Watanabe, M., Cosine families of operators and applications, (Differential Equations in Banach Spaces (1986), Springer-Verlag: Springer-Verlag Berlin), 278-292 · Zbl 0622.47046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.