×

Permanence in delayed ratio-dependent predator-prey models with monotonic functional responses. (English) Zbl 1152.34368

Summary: In this paper, sufficient conditions for permanence of the general delayed ratio-dependent predator-prey model \[ \begin{cases} x^{\prime}(t)=x(t)[a(t)-b(t)x(t)]-c(t)g\left(\frac{x(t)}{y(t)}\right)y(t),\\ y^{\prime}(t)=y(t)\left[e(t)g\left(\frac{x(t-\tau)}{y(t-\tau)}\right)-d(t)\right],\end{cases} \]
are obtained when functional response \(g\) is monotonic, where \(a(t), b(t), c(t), d(t)\) and \(e(t)\) are all positive periodic continuous functions with period \(\omega >0, \tau\) is a positive constant. We find that the conditions on existence of a positive periodic solution imply the permanence of the above system. As applications, some examples are given.

MSC:

34K13 Periodic solutions to functional-differential equations
92D25 Population dynamics (general)
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Arditi, R.; Saiah, H., Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73, 1544-1551 (1992)
[2] Beretta, E.; Kuang, Y., Global analysis in some delayed ratio-dependent predator-prey systems, Nonlinear Anal. TMA, 32, 381-408 (1998) · Zbl 0946.34061
[3] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 75, 1530-1535 (1992)
[4] Fan, M.; Wang, K., Periodicity in a delayed ratio-dependent predator-prey system, J. Math. Anal. Appl., 262, 179-190 (2001) · Zbl 0994.34058
[5] Fan, Y. H.; Li, W. T.; Wang, L. L., Periodic solutions in delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional responses, Nonlinear Anal. RWA, 5, 247-263 (2004) · Zbl 1069.34098
[6] Freedman, H. I.; Ruan, S. G., Uniform persistence in functional differential equations, J. Differential Equations, 115, 173-192 (1995) · Zbl 0814.34064
[7] Freedman, H. I.; Wu, J., Persistence and global asymptotical stability of single species dispersal models with stage structure, Quart. Appl. Math. Appl., 49, 351-371 (1991) · Zbl 0732.92021
[8] Gutierrez, A. P., The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson’s blowflies as an example, Ecology, 73, 1552-1563 (1992)
[9] Hale, J. K.; Waltman, P., Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20, 388-395 (1989) · Zbl 0692.34053
[10] Hsu, S. B.; Hwang, T. W.; Kuang, Y., Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system, J. Math. Biol., 42, 489-506 (2001) · Zbl 0984.92035
[11] Jost, C.; Arino, O.; Arditi, R., About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61, 19-32 (1999) · Zbl 1323.92173
[12] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36, 389-406 (1998) · Zbl 0895.92032
[13] Liu, S.; Chen, L., Persistence, extinction and balancing survival in nonautonomous Lotka-Volterra system with delays, Appl. Math. Comput., 129, 481-499 (2002) · Zbl 1035.34088
[14] Lu, Z.; Takeuchi, Y., Permanence and global attractivity for competitive Lotka-Volterra systems with delay, Nonlinear Anal., 22, 847-856 (1994) · Zbl 0809.92025
[15] Saito, Y., Permanence and global stability for general Lotka-Volterra predator-prey systems with distributed delays, Nonlinear Anal., 47, 6157-6168 (2001) · Zbl 1042.34581
[16] Saito, Y.; Hara, T.; Ma, W., Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236, 534-556 (1999) · Zbl 0944.34059
[17] Smith, H. I., Monotone semiflows generated by functional differential equations, J. Differential Equations, 66, 420-442 (1987) · Zbl 0612.34067
[18] Waltman, P., A brief survey of persistence in dynamical systems, (Busenberg, S.; Martelli, M., Delayed Differential Equations and Dynamical Systems (1991), Springer: Springer Berlin), 31-40 · Zbl 0756.34054
[19] Wang, L. L.; Li, W. T., Existence and global stability of positive periodic solutions of a predator-prey system with delays, Appl. Math. Comput., 146, 167-185 (2003) · Zbl 1029.92025
[20] Wang, W.; Ma, E., Harmless delays for uniform persistence, J. Math. Anal. Appl., 158, 256-268 (1991) · Zbl 0731.34085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.