×

Conformal invariance and \(2D\) statistical physics. (English) Zbl 1154.82009

Summary: A number of two-dimensional models in statistical physics are conjectured to have scaling limits at criticality that are in some sense conformally invariant. In the last ten years, the rigorous understanding of such limits has increased significantly. I give an introduction to the models and one of the major new mathematical structures, the Schramm-Loewner Evolution (\(SLE\)).

MSC:

82B27 Critical phenomena in equilibrium statistical mechanics
30C35 General theory of conformal mappings
60J65 Brownian motion
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Michel Bauer and Denis Bernard, Conformal field theories of stochastic Loewner evolutions, Comm. Math. Phys. 239 (2003), no. 3, 493 – 521. · Zbl 1046.81091 · doi:10.1007/s00220-003-0881-x
[2] V. Beffara (2007), The dimension of the SLE curves, to appear in Ann. Probab. · Zbl 1165.60007
[3] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry of critical fluctuations in two dimensions, J. Statist. Phys. 34 (1984), no. 5-6, 763 – 774. · doi:10.1007/BF01009438
[4] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333 – 380. · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[5] Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137 – 152. · Zbl 0573.30014 · doi:10.1007/BF02392821
[6] Federico Camia and Charles M. Newman, Two-dimensional critical percolation: the full scaling limit, Comm. Math. Phys. 268 (2006), no. 1, 1 – 38. · Zbl 1117.60086 · doi:10.1007/s00220-006-0086-1
[7] J. Cardy (1984), Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (FS12), 514-532.
[8] John L. Cardy, Critical percolation in finite geometries, J. Phys. A 25 (1992), no. 4, L201 – L206. · Zbl 0965.82501
[9] John Cardy, Scaling and renormalization in statistical physics, Cambridge Lecture Notes in Physics, vol. 5, Cambridge University Press, Cambridge, 1996. · Zbl 0914.60002
[10] John Cardy, SLE for theoretical physicists, Ann. Physics 318 (2005), no. 1, 81 – 118. · Zbl 1073.81068 · doi:10.1016/j.aop.2005.04.001
[11] Philippe Di Francesco, Pierre Mathieu, and David Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. · Zbl 0869.53052
[12] B. Doyon, V. Riva, and J. Cardy, Identification of the stress-energy tensor through conformal restriction in SLE and related processes, Comm. Math. Phys. 268 (2006), no. 3, 687 – 716. · Zbl 1121.81108 · doi:10.1007/s00220-006-0106-1
[13] J. Dubédat (2007), Duality of Schramm-Loewner evolutions, preprint. · Zbl 1205.60147
[14] Sergey Fomin, Loop-erased walks and total positivity, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3563 – 3583. · Zbl 0973.15014
[15] Malte Henkel, Conformal invariance and critical phenomena, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1999. · Zbl 1053.82001
[16] Claude Itzykson and Jean-Michel Drouffe, Statistical field theory. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1989. From Brownian motion to renormalization and lattice gauge theory. Claude Itzykson and Jean-Michel Drouffe, Statistical field theory. Vol. 2, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1989. Strong coupling, Monte Carlo methods, conformal field theory, and random systems. · Zbl 0825.81002
[17] T. Kennedy (2003), Monte Carlo tests of \( SLE\) predictions for \( 2D\) self-avoiding walks, Phys. Rev. Lett. 88.
[18] Tom Kennedy, Conformal invariance and stochastic Loewner evolution predictions for the 2D self-avoiding walk – Monte Carlo tests, J. Statist. Phys. 114 (2004), no. 1-2, 51 – 78. · Zbl 1060.82022 · doi:10.1023/B:JOSS.0000003104.35024.f9
[19] Richard Kenyon, The asymptotic determinant of the discrete Laplacian, Acta Math. 185 (2000), no. 2, 239 – 286. · Zbl 0982.05013 · doi:10.1007/BF02392811
[20] Michael J. Kozdron and Gregory F. Lawler, Estimates of random walk exit probabilities and application to loop-erased random walk, Electron. J. Probab. 10 (2005), 1442 – 1467. · Zbl 1110.60046 · doi:10.1214/EJP.v10-294
[21] Gregory F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005. · Zbl 1074.60002
[22] Gregory F. Lawler, The Laplacian-\? random walk and the Schramm-Loewner evolution, Illinois J. Math. 50 (2006), no. 1-4, 701 – 746. · Zbl 1128.60069
[23] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083 · doi:10.1007/BF02392619
[24] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083 · doi:10.1007/BF02392619
[25] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Analyticity of intersection exponents for planar Brownian motion, Acta Math. 189 (2002), no. 2, 179 – 201. · Zbl 1024.60033 · doi:10.1007/BF02392842
[26] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), no. 1B, 939 – 995. · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[27] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, On the scaling limit of planar self-avoiding walk, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 339 – 364. · Zbl 1069.60089
[28] Gregory Lawler, Oded Schramm, and Wendelin Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003), no. 4, 917 – 955. · Zbl 1030.60096
[29] Gregory F. Lawler and Wendelin Werner, Intersection exponents for planar Brownian motion, Ann. Probab. 27 (1999), no. 4, 1601 – 1642. · Zbl 0965.60071 · doi:10.1214/aop/1022677543
[30] Gregory F. Lawler and Wendelin Werner, Universality for conformally invariant intersection exponents, J. Eur. Math. Soc. (JEMS) 2 (2000), no. 4, 291 – 328. · Zbl 1098.60081 · doi:10.1007/s100970000024
[31] Gregory F. Lawler and Wendelin Werner, The Brownian loop soup, Probab. Theory Related Fields 128 (2004), no. 4, 565 – 588. · doi:10.1007/s00440-003-0319-6
[32] Paul Lévy, Processus stochastiques et mouvement brownien, Suivi d’une note de M. Loève. Deuxième édition revue et augmentée, Gauthier-Villars & Cie, Paris, 1965 (French). · Zbl 0034.22603
[33] Karl Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103 – 121 (German). · JFM 49.0714.01 · doi:10.1007/BF01448091
[34] Benoit B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and Co., San Francisco, Calif., 1982. Schriftenreihe für den Referenten. [Series for the Referee]. · Zbl 0504.28001
[35] Steffen Rohde and Oded Schramm, Basic properties of SLE, Ann. of Math. (2) 161 (2005), no. 2, 883 – 924. · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[36] Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221 – 288. · Zbl 0968.60093 · doi:10.1007/BF02803524
[37] Oded Schramm and Scott Sheffield, Harmonic explorer and its convergence to \?\?\?\(_{4}\), Ann. Probab. 33 (2005), no. 6, 2127 – 2148. · Zbl 1095.60007 · doi:10.1214/009117905000000477
[38] O. Schramm, S. Sheffield, Contour lines of the discrete Gaussian free field, preprint. · Zbl 1210.60051
[39] S. Sheffield, Gaussian free fields for mathematicians, preprint. · Zbl 1132.60072
[40] Stanislav Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239 – 244 (English, with English and French summaries). · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[41] Stanislav Smirnov, Towards conformal invariance of 2D lattice models, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1421 – 1451. · Zbl 1112.82014
[42] Wendelin Werner, Random planar curves and Schramm-Loewner evolutions, Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, pp. 107 – 195. · Zbl 1057.60078 · doi:10.1007/978-3-540-39982-7_2
[43] David Bruce Wilson, Generating random spanning trees more quickly than the cover time, Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996) ACM, New York, 1996, pp. 296 – 303. · Zbl 0946.60070 · doi:10.1145/237814.237880
[44] D. Zhan (2007), Reversibility of chordal SLE, to appear in Ann. Prob.
[45] D. Zhan (2007) Duality of chordal SLE, to appear in Invent. Math.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.