×

Dynamics of certain class of critically bounded entire transcendental functions. (English) Zbl 1154.37349

Summary: Let \(E\) denote the class of all transcendental entire functions for \(f(z)=\sum^{\infty}_{n=0} a_n z^n\) for \(z \in \mathbb C\) and \(a_n \geqslant 0\) for all \(n\geqslant 0\) such that \(f(x)>0\) for \(x<0\) and the set of all (finite) singular values of \(f\) forms a bounded subset of \(\mathbb R\). For each \(f\in E\), one parameter family \(\mathcal S=\{f_{\lambda}\equiv \lambda f: \lambda > 0\}\) is considered. In this paper, we mainly study the dynamics of functions in the one parameter family \(\mathcal S\). If \(f(0)\neq 0\), we show that there exists a positive real number \(\lambda^{*}\) (depending on \(f\)) such that the bifurcation and the chaotic burst occur in the dynamics of functions in the one parameter family \(\mathcal S\) at the parameter value \(\lambda =\lambda ^{*}\). If \(f(0)=0\), it is proved that the Julia set of \(f_{\lambda}\) is equal to the complement of the basin of attraction of the super attracting fixed point 0 for all \(\lambda >0\). It is also shown that the Fatou set \(\mathcal F(f_{\lambda})\) of \(f_{\lambda}\) is connected whenever it is an attracting basin and the immediate basin contains all the finite singular values of \(f_{\lambda}\). Finally, a number of interesting examples of entire transcendental functions from the class \(E\) are discussed.

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F50 Small divisors, rotation domains and linearization in holomorphic dynamics
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
Full Text: DOI

References:

[1] Bergweiler, W., Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29, 2, 151-188 (1993) · Zbl 0791.30018
[2] Bergweiler, W.; Eremenko, A. E., On the singularities of the inverse to a meromorphic functions of finite order, Rev. Mat. Iberoamericana, 11, 355-373 (1995) · Zbl 0830.30016
[3] Bergweiler, W.; Haruta, M.; Kriete, H.; Meier, H.; Terglene, N., On the limit function of iterates in wandering domains, Ann. Acad. Sci. Fenn. Math. Ser. A I Math., 18, 369-375 (1993) · Zbl 0793.30022
[4] Bowman, F., Introduction to Bessel Functions (1958), Dover: Dover New York · JFM 64.1087.01
[5] Carleson, L.; Gamelin, T. W., Complex Dynamics (1993), Springer: Springer New York · Zbl 0782.30022
[6] Devaney, R. L.; Durkin, M. B., The exploding exponential and other chaotic bursts in complex dynamics, Amer. Math. Monthly, 98, 217-233 (1991) · Zbl 0742.30025
[7] Eremenko, A. E.; Lyubich, M. Yu., The dynamics of analytic transforms, Leningrad Math. J., 1, 563-634 (1990) · Zbl 0717.58029
[8] Eremenko, A. E.; Lyubich, M. Yu., Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), 42, 989-1020 (1992) · Zbl 0735.58031
[9] Guru Prem Prasad, M., Chaotic burst in the dynamics of \(f_\lambda(z) = \lambda \frac{\sinh z}{z} \), Regul. Chaotic Dyn., 10, 1, 71-80 (2004) · Zbl 1076.37034
[10] Holland, A. S.B., Introduction to the Theory of Entire Functions (1973), Academic Press: Academic Press London · Zbl 0278.30001
[11] Kapoor, G. P.; Guru Prem Prasad, M., Dynamics of \((e^z - 1) / z\): The Julia set and bifurcation, Ergodic Theory Dynam. Systems, 18, 1363-1383 (1998) · Zbl 0915.58042
[12] Kapoor, G. P.; Guru Prem Prasad, M., Chaotic burst in the dynamics of a class of noncritically finite entire functions, Internat. J. Bifur. Chaos, 9, 6, 1137-1151 (1999) · Zbl 1089.37526
[13] Milnor, J., Dynamics in One Complex Variable (2000), Friedrick Vieweg and Son: Friedrick Vieweg and Son New York · Zbl 0972.30014
[14] Morosowa, S.; Nishimura, Y.; Taniguchi, M.; Ueda, T., Holomorphic Dynamics (2000), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0979.37001
[15] Nevanlinna, R., Analytic Functions (1970), Springer: Springer Berlin · JFM 62.0315.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.