×

A computational strategy for simulating heat transfer and flow past deformable objects. (English) Zbl 1151.80002

Summary: Simulations of flow and heat transfer around deforming objects require the accurate resolution of the moving interface. An approach that combines the Hybrid Immersed Boundary Method (HIBM) for handling complex moving boundaries and the Material Point Method (MPM) for resolving structural stresses and the movement of the deformable body is presented here. In the HIBM, a fixed Eulerian, curvilinear grid is generally defined, and the variable values at grid points adjacent to a curvilinear boundary are interpolated to satisfy the boundary conditions. The MPM is used to solve equations of the solid structure (stresses and deflection) and communicates with the flow equations through appropriate interface-boundary conditions. As a validation of the new approach for heat transfer problems, flow and heat transfer past a rigid and deforming isothermal sphere is simulated. Predictions agree well with published results of Nusselt number for flow past a rigid sphere.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

Gerris
Full Text: DOI

References:

[1] Scardovelli, R.; Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow, Ann. rev. Fluid mech. 31, 567-603 (1999)
[2] Popinet, S.; Zaleski, S.: A front-tracking algorithm for accurate representation of surface tension, Int. J. Numer. methods fluids 30, 775-793 (1999) · Zbl 0940.76047 · doi:10.1002/(SICI)1097-0363(19990730)30:6<775::AID-FLD864>3.0.CO;2-#
[3] Fritts, M.: 3-dimensional algorithm for grid restructuring in free Lagrangian calculations, Lecture notes in physics 238, 122-144 (1985) · Zbl 0582.76031
[4] Hirt, C. W.; Amsden, A. A.; Cook, J. L.: An arbitrary Lagrangian – Eulerian computing method for all flow speeds, J. comput. Phys. 14, No. 3, 227-253 (1974) · Zbl 0292.76018 · doi:10.1016/0021-9991(74)90051-5
[5] Donea, J.; Giuliani, S.; Halleux, J.: An arbitrary Lagrangian – Eulerian finite element method for transient dynamic fluid – structure interactions, Comput. methods appl. Mech. eng. 33, 689-723 (1982) · Zbl 0508.73063 · doi:10.1016/0045-7825(82)90128-1
[6] Belytschko, T.; Kennedy, J.: Finite element approach to pressure wave attenuation by reactor fuel subassemblies, J. press. Technol., 172-177 (1975)
[7] J. Donea, P. Fasoli-Stella, S. Giuliani, Finite element solution of transient fluid – structure problems in Lagrangian coordinates, in: Proceedings of the International Meeting on Fast Reactor Safety and Related Physics, Chicago, vol. 3, 1976, pp. 1427 – 1435.
[8] Liu, H.; Kawachi, K.: A numerical study of undulatory swimming, J. comput. Phys. 155, No. 2, 223-247 (1999) · Zbl 0958.76099 · doi:10.1006/jcph.1999.6341
[9] Noh, W.: CEL: A time-dependent, two-space-dimensional, Methods in computational physics, 117-179 (1964)
[10] Udaykumar, H.; Kan, H. -C.; Shyy, W.; Tran-Son-Tay, R.: Multiphase dynamics in arbitrary geometries on fixed Cartesian grids, J. comput. Phys. 137, 366-405 (1997) · Zbl 0898.76087 · doi:10.1006/jcph.1997.5805
[11] Almgren, A. S.; Bell, J. B.; Colella, P.; Marthaler, T.: A Cartesian grid projection method for the incompressible Euler equations in complex geometries, SIAM J. Sci. comput. 18, No. 5, 1289-1309 (1997) · Zbl 0910.76040 · doi:10.1137/S1064827594273730
[12] Johansen, H.; Colella, P.: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. comput. Phys. 147, 60-85 (1998) · Zbl 0923.65079 · doi:10.1006/jcph.1998.5965
[13] Udaykumar, H. S.; Mittal, R.; Rampunggoon, P.; Khanna, A.: Sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. comput. Phys. 174, 345-380 (2001) · Zbl 1106.76428 · doi:10.1006/jcph.2001.6916
[14] Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. comput. Phys. 190, No. 2, 572-600 (2003) · Zbl 1076.76002 · doi:10.1016/S0021-9991(03)00298-5
[15] Kirkpatrick, M.; Armfield, S.; Kent, J.: A representation of curved boundaries for the solution of the Navier – Stokes equations on a staggered three-dimensional Cartesian grid, J. comput. Phys. 184, No. 1, 1-36 (2003) · Zbl 1118.76350 · doi:10.1016/S0021-9991(02)00013-X
[16] Hirt, C.; Nichols, B.: Volume of fluid (VOF) methods for the dynamics of free boundaries, J. comput. Phys. 39, 201-225 (1981) · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[17] Hyman, J.: Numerical methods for tracking interfaces, Phys. D 12, 396-407 (1984) · Zbl 0604.65092 · doi:10.1016/0167-2789(84)90544-X
[18] Osher, S.; Sethian, J.: Front propagating with curvature depend speed: algorithm based on Hamilton – Jacobi equations, J. comput. Phys. 79, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[19] Sethian, J.; Smereka, P.: Level set method for fluid interface, Ann. rev. Fluid mech. 35, 341-372 (2003) · Zbl 1041.76057 · doi:10.1146/annurev.fluid.35.101101.161105
[20] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchel, I.: A hybrid particle level set method for improved interface capturing, J. comput. Phys. 183, No. 1, 83-116 (2002) · Zbl 1021.76044 · doi:10.1006/jcph.2002.7166
[21] Saul’ev, V.: On the solution of some boundary value problems on high performance computers by fictitious domain method, Siberian math. J. 4, No. 4, 912-925 (1963)
[22] Glowinski, R.; Pan, T. -W.; Hesla, T. I.; Joseph, D. D.; Periaux, J.: A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of particulate flow, Contemp. math. 218, 121-137 (1998) · Zbl 0923.76109
[23] Glowinski, R.; Pan, T.; Hesla, T. I.; Joseph, D. D.; Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. comput. Phys. 169, 363-426 (2001) · Zbl 1047.76097 · doi:10.1006/jcph.2000.6542
[24] C. Bernardi, Y. Maday, A. Patera, Domain decomposition by the mortar element method, in: H.G. Kaper, M. Garbey (Eds.), Asymptotic and Numerical Methods for PDEs with Critical Parameters. NATO ASI Series C: Mathematical and Physical Sciences, vol. 384, 1993, pp. 169 – 186. · Zbl 0799.65124
[25] Baaijens, F.: A fictious domain/mortar element method for fluid – structure interaction, Int. J. Numer. methods fluid 35, 743-761 (2001) · Zbl 0979.76044 · doi:10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
[26] Hart, J. D.; Peters, G.; Schreurs, P.; Baaijens, F.: A three-dimensional computational analysis of fluid – structure interaction in the aortic valve, J. biomech. 36, 103-112 (2003)
[27] Peskin, C.: Flow patterns around heart valves: a numerical method, J. comput. Phys. 10, 252-271 (1972) · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[28] Mittal, R.; Iaccarino, G.: Immersed boundary method, Ann. rev. Fluid mech. 37, 239-261 (2005) · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[29] Leveque, R. J.; Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. anal. 31, 1019-1044 (1994) · Zbl 0811.65083 · doi:10.1137/0731054
[30] Peskin, C.: Numerical analysis of blood flow in the heart, J. comput. Phys. 25, 220-252 (1977) · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[31] Lee, L.; Leveque, R. J.: An immersed interface method for incompressible Navier – Stokes equations, SIAM J. Sci. comput. 25, No. 3, 832-856 (2003) · Zbl 1163.65322 · doi:10.1137/S1064827502414060
[32] Xu, S.; Wang, Z. J.: An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. comput. Phys. 216, No. 2, 454-493 (2006) · Zbl 1220.76058 · doi:10.1016/j.jcp.2005.12.016
[33] Zhang, L.; Gerstenberg, A.; Wang, X.; Liu, W. K.: Immersed finite element method, Comp. methods appl. Mech. eng. 193, 2051-2067 (2004) · Zbl 1067.76576 · doi:10.1016/j.cma.2003.12.044
[34] Liu, W.; Jun, S.; Zhang, Y.: Reproducing kernel particle methods, Int. J. Numer. methods fluids 20, 1081-1106 (1995) · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[35] J. Mohd-Yusof, Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries, CTR Annual Research Briefs, Stanford University, NASA Ames, 1997.
[36] Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. comput. Phys. 161, 35-60 (2000) · Zbl 0972.76073 · doi:10.1006/jcph.2000.6484
[37] Gilmanov, A.; Sotiropoulos, F.: A hybrid Cartesian/immersed boundary method for simulating flows with 3d geometrically complex moving bodies, J. comput. Phys. 207, 457-492 (2005) · Zbl 1213.76135 · doi:10.1016/j.jcp.2005.01.020
[38] Gilmanov, A.; Sotiropoulos, F.; Balaras, E.: A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, J. comput. Phys. 191, 660-669 (2003) · Zbl 1134.76406 · doi:10.1016/S0021-9991(03)00321-8
[39] Tezduyar, T. E.; Sathe, S.; Stein, K.: Solution techniques for the fully discretized equations in computation of fluid – structure interactions with the space – time formulations, Comput. methods appl. Mech. eng. 195, 5743-5753 (2006) · Zbl 1123.76035 · doi:10.1016/j.cma.2005.08.023
[40] Schreyer, H.; Sulsky, D.; Zhou, S. -J.: Modeling delamination as a strong discontinuity with the material point method, Int. J. Numer. methods eng. 191, 2483-2507 (2002) · Zbl 1054.74070 · doi:10.1016/S0045-7825(01)00409-1
[41] Ii, A. R. York; Sulsky, D.; Schreyer, H.: Fluid – membrane interaction based on the material point method, Int. J. Numer. methods eng. 48, 901-924 (2000) · Zbl 0988.76073 · doi:10.1002/(SICI)1097-0207(20000630)48:6<901::AID-NME910>3.0.CO;2-T
[42] A. Gilmanov, S. Acharya, A fluid/structure interaction method for compliant biological tissues: application to simulate iris accommodation, in: 7th World Congress on Computational Mechanics, Los Angeles, 2006.
[43] A. Gilmanov, S. Acharya, An immersed boundary and material point methodologies for moving/compliant surfaces with heat transfer, in: Proceedings of ASME International Mechanical Congress and Exposition, Chicago, Illinois, 2006.
[44] Cate, A. T.; Nieuwstad, C.; Derksen, J.; Den Akken, H. Van: Particle imaging velocimetry experiments and lattice-Boltzmann simulation on a single sphere setting under gravity, Phys. fluids 14, 4012-4025 (2002) · Zbl 1185.76073 · doi:10.1063/1.1512918
[45] Bagchi, P.; Ha, M.; Balachandar, S.: Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross-flow, J. fluid eng. 123, 347-358 (2001)
[46] A. Green, J. Adkins, Large elastic deformation and non-linear continuum mechanics, Oxford, 1960. · Zbl 0090.17501
[47] Sotiropoulos, F.; Constantinescu, G.: Pressure-based residual smoothing operators for multistage pseudo-compressibility algorithms, J. comput. Phys. 133, No. 1, 129-145 (1997) · Zbl 0883.76062 · doi:10.1006/jcph.1997.5662
[48] Sotiropoulos, F.; Abdallah, S.: A primitive variable method for the solution of external, 3-D incompressible, viscous flows, J. comput. Phys. 103, No. 2, 336-349 (1992) · Zbl 0763.76055 · doi:10.1016/0021-9991(92)90405-N
[49] C. Merkle, M. Athavale, Time-accurate unsteady incompressible flow algorithm based on artificial compressibility, AIAA Paper 87-1137.
[50] Z. Chen, R. Brannon, An evaluation of the material point method, Tech. Rep. 2002-0482, SAND REPORT, Sandia National Laboratory, 2002.
[51] Guilkey, J.; Weiss, J.: Implicit time integration for material point method: quantitative and algorithmic comparison with the finite element method, Int. J. Numer. methods eng. 57, 1323-1338 (2003) · Zbl 1062.74653 · doi:10.1002/nme.729
[52] Harlow, F.: The particle-in-cell computing method for fluid dynamics, , 319-343 (1964)
[53] Abraham, F.: Functional dependence of drag coefficient of a sphere on Reynolds number, Phys. fluids 13, 2194 (1970)
[54] Thompson, K. W.: Time-dependent boundary conditions for hyperbolic systems II, J. comput. Phys. 89, No. 2, 439-461 (1990) · Zbl 0701.76070 · doi:10.1016/0021-9991(90)90152-Q
[55] Ladd, A.: Sedimentation of homogeneous suspensions of non-Brownian spheres, Phys. fluids 9, 491-499 (1997)
[56] Johnson, T.; Patel, V. C.: Flow past a sphere up to a Reynolds number of 300, J. fluid mech. 378, No. 10, 19-70 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.