×

A refined difference field theory for symbolic summation. (English) Zbl 1147.33006

The author introduces the basic summation problems in difference fields and presents in summarized form a refined summation theory of depth-optimal \(\Pi\Sigma^*\)-extensions in which the central results are supplemented by concrete examples.
Applications from particle physics are presented.

MSC:

33F10 Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.)
68W30 Symbolic computation and algebraic computation

Software:

qZeil; SIGMA

References:

[1] Abramov, S.; Petkovšek, M., D’Alembertian solutions of linear differential and difference equations, (von zur Gathen, J., Proc. ISSAC’94 (1994), ACM Press), 169-174 · Zbl 0919.34013
[2] Andrews, G.; Askey, R.; Roy, R., Special Functions (2006), Cambridge University Press
[3] Bauer, A.; Petkovšek, M., Multibasic and mixed hypergeometric Gosper-type algorithms, J. Symbolic Comput., 28, 4-5, 711-736 (1999) · Zbl 0973.33010
[4] Bierenbaum, I., Blümlein, J., Klein, S., Schneider, C., 2007. Difference equations in massive higher order calculations, in: Proc. ACAT 2007, volume PoS(ACAT)082; Bierenbaum, I., Blümlein, J., Klein, S., Schneider, C., 2007. Difference equations in massive higher order calculations, in: Proc. ACAT 2007, volume PoS(ACAT)082
[5] Blümlein, J., Algebraic relations between harmonic sums and associated quantities, Comput. Phys. Commun., 159, 4, 19-54 (2004) · Zbl 1097.11063
[6] Blümlein, J.; Kurth, S., Harmonic sums and Mellin transforms up to two-loop order, Phys. Rev., D60 (1999)
[7] Bronstein, M., On solutions of linear ordinary difference equations in their coefficient field, J. Symbolic Comput., 29, 6, 841-877 (2000) · Zbl 0961.12004
[8] Chyzak, F., An extension of Zeilberger’s fast algorithm to general holonomic functions, Discrete Math., 217, 115-134 (2000) · Zbl 0968.33011
[9] Driver, K.; Prodinger, H.; Schneider, C.; Weideman, J., Padé approximations to the logarithm III: Alternative methods and additional results, Ramanujan J., 12, 3, 299-314 (2006) · Zbl 1108.41011
[10] Gosper, R., Decision procedures for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75, 40-42 (1978) · Zbl 0384.40001
[11] Hendriks, P.; Singer, M., Solving difference equations in finite terms, J. Symbolic Comput., 27, 3, 239-259 (1999) · Zbl 0930.39004
[12] Karr, M., Summation in finite terms, J. ACM, 28, 305-350 (1981) · Zbl 0494.68044
[13] Karr, M., Theory of summation in finite terms, J. Symbolic Comput., 1, 303-315 (1985) · Zbl 0585.68052
[14] Kauers, M.; Schneider, C., Application of unspecified sequences in symbolic summation, (Dumas, J., Proc. ISSAC’06 (2006), ACM Press), 177-183 · Zbl 1356.68284
[15] Kauers, M.; Schneider, C., Indefinite summation with unspecified summands, Discrete Math., 306, 17, 2021-2140 (2006) · Zbl 1157.05006
[16] Kauers, M.; Schneider, C., Symbolic summation with radical expressions, (Brown, C., Proc. ISSAC’07 (2007)), 219-226 · Zbl 1190.68091
[17] Kuba, M., Prodinger, H., Schneider, C., 2005. Generalized reciprocity laws for sums of harmonic numbers. SFB-Report 2005-17, J. Kepler University Linz; Kuba, M., Prodinger, H., Schneider, C., 2005. Generalized reciprocity laws for sums of harmonic numbers. SFB-Report 2005-17, J. Kepler University Linz · Zbl 1202.68492
[18] Moch, S., Schneider, C., 2007. Feynman integrals and difference equations, in: Proc. ACAT 2007, volume PoS(ACAT)083; Moch, S., Schneider, C., 2007. Feynman integrals and difference equations, in: Proc. ACAT 2007, volume PoS(ACAT)083
[19] Osburn, R., Schneider, C., Gaussian hypergeometric series and extensions of supercongruences. Math. Comp., 2008 (in press); Osburn, R., Schneider, C., Gaussian hypergeometric series and extensions of supercongruences. Math. Comp., 2008 (in press) · Zbl 1209.11049
[20] Paule, P., Greatest factorial factorization and symbolic summation, J. Symbolic Comput., 20, 3, 235-268 (1995) · Zbl 0854.68047
[21] Paule, P.; Riese, A., A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated aproach to \(q\)-hypergeometric telescoping, (Ismail, M.; Rahman, M., Special Functions, q-Series and Related Topics, vol. 14 (1997), Fields Institute Toronto, AMS), 179-210 · Zbl 0869.33010
[22] Paule, P.; Schneider, C., Computer proofs of a new family of harmonic number identities, Adv. in Appl. Math., 31, 2, 359-378 (2003) · Zbl 1039.11007
[23] Paule, P.; Schneider, C., Truncating binomial series with symbolic summation, INTEGERS. Electron. J. Combin. Number Theory, 7, 1-9 (2007), #A22 · Zbl 1120.05005
[24] Pemantle, R.; Schneider, C., When is 0.999... equal to 1?, Amer. Math. Monthly, 114, 4, 344-350 (2007) · Zbl 1226.11134
[25] Risch, R., The problem of integration in finite terms, Trans. Amer. Math. Soc., 139, 167-189 (1969) · Zbl 0184.06702
[26] Risch, R., The solution to the problem of integration in finite terms, Bull. Amer. Math. Soc., 76, 605-608 (1970) · Zbl 0196.06801
[27] Schneider, C., 2001. Symbolic summation in difference fields. Technical Report 01-17, RISC-Linz, J. Kepler University, Ph.D. Thesis; Schneider, C., 2001. Symbolic summation in difference fields. Technical Report 01-17, RISC-Linz, J. Kepler University, Ph.D. Thesis
[28] Schneider, C., The summation package Sigma: Underlying principles and a rhombus tiling application, Discrete Math. Theor. Comput. Sci., 6, 2, 365-386 (2004) · Zbl 1066.68164
[29] Schneider, C., Symbolic summation with single-nested sum extensions, (Gutierrez, J., Proc. ISSAC’04 (2004), ACM Press), 282-289 · Zbl 1134.33329
[30] Schneider, C., Finding telescopers with minimal depth for indefinite nested sum and product expressions, (Kauers, M., Proc. ISSAC’05 (2005), ACM), 285-292 · Zbl 1360.68953
[31] Schneider, C., A new Sigma approach to multi-summation, Adv. in Appl. Math. Special Issue Dedicated to Dr. David P. Robbins, 34, 4, 740-767 (2005) · Zbl 1078.33021
[32] Schneider, C., Product representations in \(\Pi \Sigma \)-fields, Ann. Comb., 9, 1, 75-99 (2005) · Zbl 1123.33021
[33] Schneider, C., Solving parameterized linear difference equations in terms of indefinite nested sums and products, J. Difference Equ. Appl., 11, 9, 799-821 (2005) · Zbl 1087.33011
[34] Schneider, C., Simplifying Sums in \(\Pi \Sigma \)-Extensions, J. Algebra Appl., 6, 3, 415-441 (2007) · Zbl 1120.33023
[35] Schneider, C., Symbolic summation assists combinatorics, Sém. Lothar. Combin., 56, 1-36 (2007), Article B56b · Zbl 1188.05001
[36] Schneider, C., 2007c. Symbolic summation finds optimal nested sum representations. SFB-Report 2007-26, SFB F013, J. Kepler University Linz; Schneider, C., 2007c. Symbolic summation finds optimal nested sum representations. SFB-Report 2007-26, SFB F013, J. Kepler University Linz
[37] Schneider, C., 2008. Parameterized telescoping proves algebraic independence of sums. Ann. Comb. (in press); Schneider, C., 2008. Parameterized telescoping proves algebraic independence of sums. Ann. Comb. (in press) · Zbl 1232.33034
[38] Singer, M.; Saunders, B.; Caviness, B., An extension of Liouville’s theorem on integration in finite terms, SIAM J. Comput., 14, 4, 966-990 (1985) · Zbl 0575.12021
[39] Vermaseren, J., Harmonic sums, Mellin transforms and integrals, Internat. J. Modern Phys., A14, 2037-2976 (1999) · Zbl 0939.65032
[40] Vermaseren, J.; Vogt, A.; Moch, S., The third-order qcd corrections to deep-inelastic scattering by photon exchange, Nuclear Phys., B724, 3-182 (2005) · Zbl 1178.81286
[41] Zeilberger, D., The method of creative telescoping, J. Symbolic Comput., 11, 195-204 (1991) · Zbl 0738.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.