×

A new Sigma approach to multi-summation. (English) Zbl 1078.33021

The author presents a general algorithmic framework that allows not only to deal with summation problems over summands being rational expressions in indefinite nested sums and products but also over \(\partial\)-finite and holonomic summand expressions that are given by a linear recurrence. For this approach a new Package Sigma for the computer algebra system Mathematica is presented.

MSC:

33F05 Numerical approximation and evaluation of special functions
68W30 Symbolic computation and algebraic computation
05E35 Orthogonal polynomials (combinatorics) (MSC2000)
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
Full Text: DOI

References:

[1] Abramov, S. A., Rational solutions of linear differential and difference equations with polynomial coefficients, USSR Comput. Math. Math. Phys., 29, 6, 7-12 (1989) · Zbl 0719.65063
[2] Abramov, S. A., Rational solutions of linear difference and \(q\)-difference equations with polynomial coefficients, (Levelt, T., Proc. ISSAC’95 (1995), ACM Press: ACM Press New York), 285-289 · Zbl 0914.65131
[3] Abramov, S. A.; van Hoeij, M., Integration of solutions of linear functional equations, Integral Transform. Spec. Funct., 8, 1-2, 3-12 (1999) · Zbl 0939.34059
[4] G.E. Andrews, P. Paule, C. Schneider, Plane partitions VI: Stembridge’s TSPP Theorem—a detailed algorithmic proof, Technical Report 04-08, RISC-Linz, J. Kepler University, 2004; G.E. Andrews, P. Paule, C. Schneider, Plane partitions VI: Stembridge’s TSPP Theorem—a detailed algorithmic proof, Technical Report 04-08, RISC-Linz, J. Kepler University, 2004 · Zbl 1066.05019
[5] Andrews, G. E.; Paule, P.; Schneider, C., Plane partitions VI: Stembridge’s TSPP Theorem, Adv. in Appl. Math., 34, 4, 709-739 (2005), this issue · Zbl 1066.05019
[6] Bronstein, M., On solutions of linear ordinary difference equations in their coefficient field, J. Symbolic Comput., 29, 6, 841-877 (June 2000) · Zbl 0961.12004
[7] Chyzak, F., Groebner bases, symbolic summation and symbolic integration, (Buchberger, B.; Winkler, F., Groebner Bases and Applications, Proceedings of the Conference 33 Years of Groebner Bases (1998), Cambridge University Press), 32-60 · Zbl 0898.68040
[8] Chyzak, F., An extension of Zeilberger’s fast algorithm to general holonomic functions, Discrete Math., 217, 115-134 (2000) · Zbl 0968.33011
[9] Chyzak, F.; Salvy, B., Non-commutative elimination in ore algebras proves multivariate identities, J. Symbolic Comput., 26, 2, 187-227 (1998) · Zbl 0944.05006
[10] Driver, K.; Prodinger, H.; Schneider, C.; Weideman, A., Padé approximations to the logarithm II: Identities, recurrences, and symbolic computation, Ramanujan J. (2005), in press
[11] Driver, K.; Prodinger, H.; Schneider, C.; Weideman, A., Padé approximations to the logarithm III: Alternative methods and additional results, Ramanujan J. (2005), in press
[12] Faugère, J. C.; Gianni, P.; Lazard, D.; Mora, T., Efficient computation of zero-dimensional Gröbner basis by change of ordering, J. Symbolic Comput., 16, 4, 329-344 (October 1993) · Zbl 0805.13007
[13] S. Gerhold, Uncoupling systems of linear ore operator equations, Master’s thesis, RISC-Linz, J. Kepler University, 2002; S. Gerhold, Uncoupling systems of linear ore operator equations, Master’s thesis, RISC-Linz, J. Kepler University, 2002
[14] Gosper, R. W., Decision procedures for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75, 40-42 (1978) · Zbl 0384.40001
[15] Karr, M., Summation in finite terms, J. ACM, 28, 305-350 (1981) · Zbl 0494.68044
[16] Karr, M., Theory of summation in finite terms, J. Symbolic Comput., 1, 303-315 (1985) · Zbl 0585.68052
[17] Lyons, R.; Paule, P.; Riese, A., A computer proof of a series evaluation in terms of harmonic numbers, Appl. Algebra Engrg. Comm. Comput., 13, 327-333 (2002) · Zbl 1011.33003
[18] P. Paule, Contiguous relations and creative telescoping, Preprint, 2005; P. Paule, Contiguous relations and creative telescoping, Preprint, 2005
[19] Paule, P.; Riese, A., A Mathematica \(q\)-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to \(q\)-hypergeometric telescoping, (Ismail, M.; Rahman, M., Special Functions, \(q\)-Series and Related Topics, vol. 14 (1997), Fields Institute Toronto, Amer. Math. Soc.), 179-210 · Zbl 0869.33010
[20] Paule, P.; Schorn, M., A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities, J. Symbolic Comput., 20, 5-6, 673-698 (1995) · Zbl 0851.68052
[21] Paule, P.; Schneider, C., Computer proofs of a new family of harmonic number identities, Adv. in Appl. Math., 31, 2, 359-378 (2003) · Zbl 1039.11007
[22] P. Paule, C. Schneider, Creative telescoping for hypergeometric double sums, Preprint, 2005; P. Paule, C. Schneider, Creative telescoping for hypergeometric double sums, Preprint, 2005
[23] Petkovšek, M.; Wilf, H. S.; Zeilberger, D., \(A = B (1996)\), A.K. Peters: A.K. Peters Wellesley, MA · Zbl 0848.05002
[24] A. Riese, B. Zimmermann, Randomization speeds up hypergeometric summation, Preprint, 2005; A. Riese, B. Zimmermann, Randomization speeds up hypergeometric summation, Preprint, 2005
[25] Schneider, C., An implementation of Karr’s summation algorithm in Mathematica, Sém. Lothar. Combin., S43b, 1-10 (2000) · Zbl 0941.68162
[26] C. Schneider, Symbolic summation in difference fields, Technical Report 01-17, RISC-Linz, J. Kepler University, November 2001; PhD Thesis; C. Schneider, Symbolic summation in difference fields, Technical Report 01-17, RISC-Linz, J. Kepler University, November 2001; PhD Thesis
[27] Schneider, C., A collection of denominator bounds to solve parameterized linear difference equations in ΠΣ-extensions, (Petcu, D.; Negru, V.; Zaharie, D.; Jebelean, T., Proc. SYNASC04, 6th International Symposium on Symbolic and Numeric Algorithms for Scientific Computation (2004), Mirton Publishing), 269-282
[28] C. Schneider, Solving parameterized linear difference equations in terms of indefinite nested sums and products, SFB-Report 2004-29, J. Kepler University, Linz, 2004; C. Schneider, Solving parameterized linear difference equations in terms of indefinite nested sums and products, SFB-Report 2004-29, J. Kepler University, Linz, 2004
[29] Schneider, C., The summation package Sigma: underlying principles and a rhombus tiling application, Discrete Math. Theor. Comput. Sci., 6, 2, 365-386 (2004) · Zbl 1066.68164
[30] Schneider, C., Symbolic summation with single-nested sum extensions, (Gutierrez, J., Proc. ISSAC’04 (2004), ACM Press), 282-289 · Zbl 1134.33329
[31] Schneider, C., Degree bounds to find polynomial solutions of parameterized linear difference equations in ΠΣ-fields, Appl. Algebra Engrg. Comm. Comput. (2005), in press · Zbl 1101.39001
[32] Schneider, C., Product representations in ΠΣ-fields, Ann. Comb., 9, 1, 75-99 (2005) · Zbl 1123.33021
[33] Stembridge, J., The enumeration of totally symmetric plane partitions, Adv. Math., 111, 227-243 (1995) · Zbl 0823.05005
[34] Verbaeten, P., The automatic construction of pure recurrence equations, ACM-SIGSAM Bull., 8, 96-98 (1974)
[35] K. Wegschaider, Computer generated proofs of binomial multi-sum identities, Diploma thesis, RISC-Linz, Johannes Kepler University, May 1997; K. Wegschaider, Computer generated proofs of binomial multi-sum identities, Diploma thesis, RISC-Linz, Johannes Kepler University, May 1997
[36] Wilf, H.; Zeilberger, D., An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math., 108, 575-633 (1992) · Zbl 0739.05007
[37] Zeilberger, D., A fast algorithm for proving terminating hypergeometric identities, Discrete Math., 80, 2, 207-211 (1990) · Zbl 0701.05001
[38] Zeilberger, D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 32, 321-368 (1990) · Zbl 0738.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.