×

Algebraic pressure segregation methods for the incompressible Navier-Stokes equations. (English) Zbl 1144.76027

Summary: This work is an overview of algebraic pressure segregation methods for incompressible Navier-Stokes equations. These methods can be understood as an inexact \(LU\) block factorization of the original system matrix. We have considered a wide set of methods: algebraic pressure correction methods, algebraic velocity correction methods and Yosida method. Higher-order schemes, based on improved factorizations, are also introduced. We have also explained the relationship between these pressure segregation methods and some widely used preconditioners, and we have introduced predictor-corrector methods, one-loop algorithms where nonlinearity and iterations towards the monolithic system are coupled.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics

References:

[1] Armero F, Simo JC (1996) Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with application to MHD and Navier-Stokes equations. Comput Methods Appl Mech Eng 131:41–90 · Zbl 0888.76042 · doi:10.1016/0045-7825(95)00931-0
[2] Arrow K, Hurwicz L, Uzawa H (1958) Studies in nonlinear programming. Stanford University Press, Stanford · Zbl 0091.16002
[3] Babuška I (1971) Error bounds for the finite element method. Numer Math 16:322–333 · Zbl 0214.42001 · doi:10.1007/BF02165003
[4] Badia S (2006) Stabilized pressure segregation methods and their application to fluid-structure interaction problems. PhD thesis, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya, Barcelona
[5] Badia S, Codina R (2007) Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numer Math 107(4):533–557 · Zbl 1132.76029 · doi:10.1007/s00211-007-0099-5
[6] Badia S, Codina R (2007) On some fluid-structure iterative algorithms using pressure segregation methods. Application to aeroelasticity. Int J Numer Methods Eng 72:46–71 · Zbl 1194.74361 · doi:10.1002/nme.1998
[7] Badia S, Codina R (2008) Pressure segregation methods based on a discrete pressure Poisson equation. An algebraic approach. Int J Numer Methods Fluids 56(4):351–382 · Zbl 1129.76032 · doi:10.1002/fld.1532
[8] Baker GA, Dougalis VA, Karakashian A (1982) On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math Comput 39:339–375 · Zbl 0503.76038 · doi:10.1090/S0025-5718-1982-0669634-0
[9] Bell JB, Colella P, Glaz HM (1989) A second-order projection method for the incompressible Navier-Stokes equations. J Comput Phys 85:257–283 · Zbl 0681.76030 · doi:10.1016/0021-9991(89)90151-4
[10] Blasco J, Codina R (2001) Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier-Stokes equations. Appl Numer Math 38:475–497 · Zbl 1011.76041 · doi:10.1016/S0168-9274(01)00048-4
[11] Blasco J, Codina R (2004) Error estimates for an operator splitting method for incompressible flows. Appl Numer Math 51:1–17 · Zbl 1126.76339 · doi:10.1016/j.apnum.2004.02.004
[12] Blasco J, Codina R, Huerta A (1998) A fractional step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int J Numer Methods Fluids 28:1391–1419 · Zbl 0935.76041 · doi:10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5
[13] Boland JM, Nicolaides RA (1983) Stability of finite elements under divergence constraints. SIAM J Numer Anal 20:722–731 · Zbl 0521.76027 · doi:10.1137/0720048
[14] Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer, Berlin
[15] Brezzi F (1974) On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal Numer 8:129–151 · Zbl 0338.90047
[16] Brezzi F, Bathe KJ (1990) A discourse on the stability conditions for mixed finite element formulations. Comput Methods Appl Mech Eng 82:27–57 · Zbl 0736.73062 · doi:10.1016/0045-7825(90)90157-H
[17] Brezzi F, Douglas J (1988) Stabilized mixed methods for the Stokes problem. Numer Math 53:225–235 · Zbl 0669.76052 · doi:10.1007/BF01395886
[18] Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, Berlin · Zbl 0788.73002
[19] Brezzi F, Rappaz J, Raviart PA (1981) Finite dimensional approximation of nonlinear problems. Part I: Branches of non-singular solutions. Numer Math 36:1–25 · Zbl 0488.65021 · doi:10.1007/BF01395985
[20] Brezzi F, Rappaz J, Raviart PA (1981) Finite dimensional approximation of nonlinear problems. Part II: Limit points. Numer Math 37:1–28 · Zbl 0525.65036 · doi:10.1007/BF01396184
[21] Brezzi F, Rappaz J, Raviart PA (1981) Finite dimensional approximation of nonlinear problems. Part III: Simple bifurcation points. Numer Math 38:1–30 · Zbl 0525.65037 · doi:10.1007/BF01395805
[22] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Comput Methods Appl Mech Eng 32:199–259 · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[23] Cahouet J, Chabard J-P (1988) Some fast 3D finite element solvers for the generalized Stokes problem. Int J Numer Methods Fluids 8:869–895 · Zbl 0665.76038 · doi:10.1002/fld.1650080802
[24] Chorin AJ (1967) A numerical method for solving incompressible viscous problems. J Comput Phys 2:12–26 · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[25] Chorin AJ (1967) The numerical solution of the Navier-Stokes equations for an incompressible fluid. AEC Research and Development Report, NYO-1480-82. New York University, New York, 1967
[26] Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comput 22:745–762 · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[27] Chorin AJ (1969) On the convergence of discrete approximation to the Navier-Stokes equations. Math Comput, 23 · Zbl 0184.20103
[28] Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amsterdam · Zbl 0383.65058
[29] Clay Mathematics Institute (2000) http://www.claymath.org/millenium/ . Millennium Problems
[30] Codina R (1998) Comparison of some finite element methods for solving the dif fusion-convection-reaction equation. Comput Methods Appl Mech Eng 156:185–210 · Zbl 0959.76040 · doi:10.1016/S0045-7825(97)00206-5
[31] Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Methods Appl Mech Eng 190:1579–1599 · Zbl 0998.76047 · doi:10.1016/S0045-7825(00)00254-1
[32] Codina R (2001) Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys 170:112–140 · Zbl 1002.76063 · doi:10.1006/jcph.2001.6725
[33] Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321 · Zbl 1015.76045 · doi:10.1016/S0045-7825(02)00337-7
[34] Codina R, Badia S (2004) Second order fractional step schemes for the incompressible Navier-Stokes equations. Inherent pressure stability and pressure stabilization. In: Proceedings of WCCM VI, Beijing, China, 2004
[35] Codina R, Badia S (2006) On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 195:2900–2918 · Zbl 1121.76032 · doi:10.1016/j.cma.2004.06.048
[36] Codina R, Blasco J (1997) A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput Methods Appl Mech Eng 143:373–391 · Zbl 0893.76040 · doi:10.1016/S0045-7825(96)01154-1
[37] Codina R, Blasco J (2000) Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations. Numer Math 87:59–81 · Zbl 0988.76049 · doi:10.1007/s002110000174
[38] Codina R, Blasco J (2002) Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales. Comput Vis Sci 4:167–174 · Zbl 0995.65101 · doi:10.1007/s007910100068
[39] Codina R, Folch A (2004) A stabilized finite element predictor–corrector scheme for the incompressible Navier-Stokes equations using a nodal based implementation. Int J Numer Methods Fluids 44:483–503 · Zbl 1085.76035 · doi:10.1002/fld.648
[40] Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196:24132–2430 · Zbl 1173.76335 · doi:10.1016/j.cma.2007.01.002
[41] Codina R, Soto O (2004) Approximation of the incompressible Navier-Stokes equations using orthogonal-subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput Methods Appl Mech Eng 193:1403–1419 · Zbl 1079.76579 · doi:10.1016/j.cma.2003.12.030
[42] de Rham G (1973) Variétés différentiables formes, courants, formes harmoniques. Hermann, Paris · Zbl 0284.58001
[43] E W, Liu JG (1995) Projection method I: Convergence and numerical boundary layers. SIAM J Numer Anal 32:1017–1057 · Zbl 0842.76052 · doi:10.1137/0732047
[44] Elman HC (2002) Preconditioners for saddle point problems arising in computational fluid dynamics. Appl Numer Math 43:75–89 · Zbl 1168.76348 · doi:10.1016/S0168-9274(02)00118-6
[45] Elman HC, Howle VE, Shadid JN, Tuminaro RS (2003) A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations. J Comput Phys 187:504–523 · Zbl 1061.76058 · doi:10.1016/S0021-9991(03)00121-9
[46] Elman HC, Silvester DJ, Wathen AJ (2002) Block preconditioners for the discrete incompressible Navier-Stokes equations. Int J Numer Methods Fluids 40:333–344 · Zbl 1019.76023 · doi:10.1002/fld.311
[47] Ern A, Guermond JL (2004) Theory and practice of finite elements. Springer, Berlin · Zbl 1059.65103
[48] Franca L, Stenberg R (1991) Error analysis of some Galerkin least-squares methods for the elasticity equations. SIAM J Numer Anal 28:1680–1697 · Zbl 0759.73055 · doi:10.1137/0728084
[49] Fried I, Malkus DS (1975) Finite element mass matrix lumping by numerical integration with no convergence rate loss. Int J Solids Struct 11:461–466 · Zbl 0301.65010 · doi:10.1016/0020-7683(75)90081-5
[50] Gervasio P (2006) Convergence analysis of high order algebraic fractional step schemes for time-dependent Stokes equations. Technical report, Quaderno del Seminario Matematico di Brescia, 2006 · Zbl 1103.76043
[51] Gervasio P, Saleri F (2006) Algebraic fractional-step schemes for time-dependent incompressible Navier-Stokes equations. J Sci Comput 27(1–3):257–269 · Zbl 1103.76043 · doi:10.1007/s10915-005-9051-y
[52] Gervasio P, Saleri F, Veneziani A (2006) Algebraic fractional-step schemes with spectral methods for the incompressible Navier-Stokes equations. J Comput Phys 214(1):347–365 · Zbl 1137.76338 · doi:10.1016/j.jcp.2005.09.018
[53] Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations. Springer, Berlin · Zbl 0585.65077
[54] Gresho PM, Sani RL (2000) Incompressible flow and the finite element method. Wiley, New York
[55] Gresho PM (1990) On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part I: Theory. Int J Numer Methods Fluids 11:587–620 · Zbl 0712.76035 · doi:10.1002/fld.1650110509
[56] Gresho PM, Chan ST, Christon MA, Hindmarsh AC (1995) A little more on stabilized q 1 q 1 for transient viscous incompressible flow. Int J Numer Methods Fluids 21:837–856 · Zbl 0862.76034 · doi:10.1002/fld.1650211005
[57] Guermond JL (1994) Remarques sur les méthodes de projection pour l’approximation des équations de Navier-Stokes. Numer Math 67:465–473 · Zbl 0802.76057 · doi:10.1007/s002110050038
[58] Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Eng 195:6011–6045 · Zbl 1122.76072 · doi:10.1016/j.cma.2005.10.010
[59] Guermond JL, Quartapelle L (1998) On stability and convergence of projection methods based on pressure Poisson equation. Int J Numer Methods Fluids 26:1039–1053 · Zbl 0912.76054 · doi:10.1002/(SICI)1097-0363(19980515)26:9<1039::AID-FLD675>3.0.CO;2-U
[60] Guermond JL, Quartapelle L (1998) On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer Math 80:207–238 · Zbl 0914.76051 · doi:10.1007/s002110050366
[61] Guermond JL, Shen J (2003) A new class of truly consistent splitting schemes for incompressible flows. J Comput Phys 192:262–276 · Zbl 1032.76529 · doi:10.1016/j.jcp.2003.07.009
[62] Guermond JL, Shen J (2003) Velocity-correction projection methods for incompressible flows. SIAM J Numer Anal 41:112–134 · Zbl 1130.76395 · doi:10.1137/S0036142901395400
[63] Guermond JL, Shen J (2004) On the error estimates for the rotational pressure-correction projection methods. Math Comput 73:1719–1737 · Zbl 1093.76050
[64] Heywood JG, Rannacher R (1982) Finite element approximation of the nonstationary Navier-Stokes problem. I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J Numer Anal 19:275–311 · Zbl 0487.76035 · doi:10.1137/0719018
[65] Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes in the finite element method. Earthquake Eng Struct Dyn 4:245–249 · doi:10.1002/eqe.4290040305
[66] Hughes TJR (1995) Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations. Comput Methods Appl Mech Eng 127:387–401 · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[67] Hughes TJR, Franca LP, Hulbert GM (1987) A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput Methods Appl Mech Eng 65:85–96 · Zbl 0635.76067 · doi:10.1016/0045-7825(87)90184-8
[68] Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189 · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[69] Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection-diffusion-reaction equations. Springer, Berlin · Zbl 1030.65100
[70] Karniadakis GE, Israeli M, Orszag SE (1991) High order splitting methods for the incompressible Navier-Stokes equations. J Comput Phys 59:414–443 · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[71] Kim J, Moin P (1985) Application of the fractional step method to incompressible Navier-Stokes equations. J Comput Phys 59:308–323 · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[72] Ladyzhenskaya O (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York · Zbl 0184.52603
[73] Leray J (1934) Essai sur les mouvements d’un liquide visqueux emplissant l’espace. Acta Math 63:193–248 · JFM 60.0726.05 · doi:10.1007/BF02547354
[74] Loghin D, Wathen AJ (2002) Schur complement preconditioners for the Navier-Stokes equations. Int J Numer Methods Fluids 40:403–412 · Zbl 1061.76032 · doi:10.1002/fld.296
[75] Oden JT, Demkowicz LZ (1996) Applied functional analysis. CRC Press, Boca Raton
[76] Orszag SA, Israeli M, Deville M (1986) Boundary conditions for incompressible flows. J Sci Comput 1:75–111 · Zbl 0648.76023 · doi:10.1007/BF01061454
[77] Perot JB (1993) An analysis of the fractional step method. J Comput Phys 108:51–58 · Zbl 0778.76064 · doi:10.1006/jcph.1993.1162
[78] Prohl A (1997) Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations. Teubner, Stuttgart · Zbl 0874.76002
[79] Quarteroni A, Sacchi Landriani G, Valli A (1991) Coupling viscous and inviscid Stokes equations via a domain decomposition method for finite elements. Numer Math 59:831–859 · Zbl 0738.76044 · doi:10.1007/BF01385813
[80] Quarteroni A, Saleri F, Veneziani A (1999) Analysis of the Yosida method for the incompressible Navier-Stokes equations. J Math Pures Appl 78:473–503 · Zbl 0930.35127 · doi:10.1016/S0021-7824(99)00027-6
[81] Quarteroni A, Saleri F, Veneziani A (2000) Factorization methods for the numerical approximation of Navier-Stokes equations. Comput Methods Appl Mech Eng 188:505–526 · Zbl 0976.76044 · doi:10.1016/S0045-7825(99)00192-9
[82] Rannacher R (1992) On Chorin’s projection method for incompressible Navier-Stokes equations. Lecture notes in mathematics, vol 1530. Springer, Berlin, pp 167–183 · Zbl 0769.76053
[83] Saad Y (1996) Iterative methods for sparse linear systems. PWS-Kent, Boston · Zbl 1031.65047
[84] Saleri F, Veneziani A (2005) Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations. SIAM J Numer Anal 43(1):174–194 · Zbl 1128.76047 · doi:10.1137/S0036142903435429
[85] Shen J (1992) On error estimates for some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer Math 62:49–73 · Zbl 0739.76017 · doi:10.1007/BF01396220
[86] Shen J (1992) On error estimates of projection methods for Navier-Stokes equations: first order schemes. SIAM J Numer Anal 29:57–77 · Zbl 0741.76051 · doi:10.1137/0729004
[87] Shen J (1993) A remark on the projection-3 method. Int J Numer Methods Fluids 16:249–253 · Zbl 0768.76039 · doi:10.1002/fld.1650160308
[88] Shen J (1994) Remarks on the pressure error estimates for the projection methods. Numer Math 67:513–520 · Zbl 0802.76060 · doi:10.1007/s002110050042
[89] Shen J (1996) On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math Comput 65:1039–1065 · Zbl 0855.76049 · doi:10.1090/S0025-5718-96-00750-8
[90] Simo JC, Armero F (1994) Unconditional stability and long term behavior of transient algorithms for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 111:111–154 · Zbl 0846.76075 · doi:10.1016/0045-7825(94)90042-6
[91] Strang G, Fix J (1973) An analysis of the finite element method. Prentice Hall, Englewood Cliffs · Zbl 0356.65096
[92] Temam R (1968) Sur la stabilité et la convergence de la méthode des pas fractionaires. Ann Math Pures Appl LXXIV:191–380 · Zbl 0174.45804 · doi:10.1007/BF02415183
[93] Temam R (1968) Une méthode d’approximations de la solution des equations de Navier-Stokes. Bull Soc Math Fr 98:115–152 · Zbl 0181.18903
[94] Temam R (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionaires (I). Arch Ration Mech Anal 32:135–153 · Zbl 0195.46001 · doi:10.1007/BF00247678
[95] Temam R (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionaires (II). Arch Ration Mech Anal 33:377–385 · Zbl 0207.16904 · doi:10.1007/BF00247696
[96] Temam R (1984) Navier-Stokes equations. North-Holland, Amsterdam · Zbl 0568.35002
[97] Temam R (1991) Remark on the pressure boundary condition for the projection method. Theor Comput Fluid Dyn 3:181–184 · Zbl 0738.76054 · doi:10.1007/BF00271801
[98] Timmermans LJP, Minev PD, Van de Vosse FN (1996) An approximate projection scheme for incompressible flow using spectral elements. Int J Numer Methods Fluids 22:673–688 · Zbl 0865.76070 · doi:10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O
[99] Turek S (1999) Efficient solvers for incompressible flow problems. Lecture notes in computational science and engineering. Springer, Berlin · Zbl 0930.76002
[100] van Kan J (1986) A second-order accurate pressure correction scheme for viscous incompressible flow. SIAM J Sci Stat Comput 7:870–891 · Zbl 0594.76023 · doi:10.1137/0907059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.