×

Mixed resolutions and simplicial sections. (English) Zbl 1143.14002

Let \(\mathbb{K}\)-be a field of characteristic zero. Given a morphism \(\pi : Z\to X\) of \(\mathbb{HK}\)-schemes, the author defines a simplicial section of \(\pi\) based on a covering of \(X\). Next, a de Rham and a simplicial- Čech typed resolution is mixed and a notion of a mixed resolution of a \(\mathcal{O}_X\)-modules is introduced.
A connection, used by the author [Adv. Math. 198, No. 1, 383–432 (2005; Zbl 1085.53081)], between those two notions is presented. The author believes that his results will be helpful in a proof of M. Kontsevich’s claim [Lett. Math. Phys. 66, No. 3, 157–216 (2003; Zbl 1058.53065)].

MSC:

14A15 Schemes and morphisms
13D02 Syzygies, resolutions, complexes and commutative rings
18E30 Derived categories, triangulated categories (MSC2010)

References:

[1] A. Grothendieck and J. Dieudonné, Éléments de Géometrie Algébrique I, Springer, Berlin, 1971.
[2] A. Grothendieck and J. Dieudonné, Éléments de Géometrie Algébrique IV, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, vol. 32, 1967.
[3] R. Bott, Lectures on Characteristic Classes and Polarizations, Lecture Notes in Mathematics, vol. 279, Springer, Berlin, 1972. · Zbl 0241.57010
[4] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin, 1977.
[5] R. Hübl and A. Yekutieli, Adelic Chern forms and applications, American Journal of Mathematics 121 (1999), 797–839. · Zbl 1010.14003 · doi:10.1353/ajm.1999.0030
[6] V. Hinich and V. Schechtman, Deformation theory and Lie algebra homology II, Algebra Col 4 (1997), 291–316. · Zbl 0919.17014
[7] M. Kontsevich, Deformation quantization of Poisson manifolds, Letters in Mathematical Physics 66 (2003), 157–216. · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[8] R. Nest and B. Tsygan, Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian Journal of Mathematics 5 (2001), 599–635. · Zbl 1023.53060
[9] A. Yekutieli, The Continuous Hochschild Cochain Complex of a Scheme, Canadian Journal of Mathematics 54 (2002), 1319–1337. · Zbl 1047.16004 · doi:10.4153/CJM-2002-051-8
[10] A. Yekutieli, Continuous and Twisted L-infinity Morphisms, Journal of Pure and Applied Algebra 207 (2006), 575–606. · Zbl 1104.53085 · doi:10.1016/j.jpaa.2005.10.006
[11] A. Yekutieli, Deformation Quantization in Algebraic Geometry, Advances in Mathematics 198 (2005), 383–432 (Michael Artin Volume). · Zbl 1085.53081 · doi:10.1016/j.aim.2005.06.009
[12] A. Yekutieli, An Averaging Process for Unipotent Group Actions, Representation Theory 10 (2006), 147–157. · Zbl 1130.14034 · doi:10.1090/S1088-4165-06-00285-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.