×

Linearized Galerkin and artificial parameter techniques for the determination of periodic solutions of nonlinear oscillators. (English) Zbl 1135.65344

Summary: Linearized harmonic balance-Galerkin methods for the determination of the periodic solutions of nonlinear oscillators are presented and the results are compared with those of an artificial parameter method based on the introduction of a linear stiffness term and the Linstedt-Poincaré technique. The linearized harmonic balance methods presented in this paper are not iterative and are based on Taylor series expansions, the neglect of nonlinear terms in the resulting series, a Fourier approximation to the solution, and orthogonality conditions.
It is shown that the first approximation provided by the linearized harmonic balance technique is identical to that of the artificial parameter method, whereas the second one depends on how the equation is linearized and written, and the discrepancies have been found to be caused by the neglect of the nonlinear terms in the Taylor series expansion because a Fourier series expansion of these terms introduces harmonics which are not accounted for in the linearization procedure. It is also shown that the first approximation of the artificial parameter method and the linearized harmonic balance procedure are asymptotically equivalent to that derived from a modified Linstedt-Poincaré method, when the nonlinearities are small, and that these techniques may not be applicable to some oscillators.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
Full Text: DOI

References:

[1] Nayfeh, A. H., Perturbation Methods (1973), John Wiley & Sons: John Wiley & Sons New York · Zbl 0375.35005
[2] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979), John Wiley & Sons: John Wiley & Sons New York · Zbl 0418.70001
[3] Kevorkian, J.; Cole, J. D., Multiple Scale and Singular Perturbation Methods (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0846.34001
[4] Mickens, R. E., An Introduction to Nonlinear Oscillations (1981), Cambridge University Press: Cambridge University Press New York · Zbl 0453.70019
[5] Wu, B. S.; Sun, W. P.; Lim, C. W., An analytical approximate technique for a class of strongly non-linear oscillators, Int. J. Non-linear Mech., 41, 766-774 (2006) · Zbl 1160.70340
[6] Wu, B. S.; Lim, C. W.; Ma, Y. F., Analytical approximation to large-amplitude oscillation of a non-linear conservative system, Int. J. Non-linear Mech., 38, 1037-1043 (2003) · Zbl 1348.34075
[7] Wu, B. S.; Lim, C. W., Large amplitude non-linear oscillations of a general conservative system, Int. J. Non-linear Mech., 39, 859-870 (2004) · Zbl 1348.34074
[8] Wu, B.; Li, P., A method for obtaining approximate analytic periods for a class of nonlinear oscillators, Meccanica, 36, 167-176 (2001) · Zbl 1008.70016
[9] Mickens, R. E., A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators”, J. Sound Vibr., 287, 1045-1051 (2005) · Zbl 1243.65079
[10] Lim, C. W.; Wu, B. S., A modified Mickens procedure for certain non-linear oscillators, J. Sound Vibr., 257, 202-206 (2002) · Zbl 1237.70109
[11] Mickens, R. E., Iteration method solutions for conservative and limit-cycle \(x^{1/3}\) force oscillators, J. Sound Vibr., 292, 964-968 (2006) · Zbl 1243.34051
[12] Hu, H., Solutions of nonlinear oscillators with fractional powers by an iterative procedure, J. Sound Vibr., 294, 608-614 (2006) · Zbl 1243.34005
[13] Marinca, V.; Herinasu, N., A modified iteration perturbation method for some nonlinear oscillation problems, Acta Mech., 184, 142-231 (2006) · Zbl 1106.70014
[14] He, Ji-H., Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys., 20, 1141-1199 (2006) · Zbl 1102.34039
[15] Bender, C. M.; Milton, K. A.; Pinsky, S. S.; Simmons, L. M., A new perturbative approach to nonlinear problems, J. Math. Phys., 30, 1447-1455 (1989) · Zbl 0684.34008
[16] J.I. Ramos, On Linstedt-Poincaré techniques for the quintic Duffing equation, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.03.050; J.I. Ramos, On Linstedt-Poincaré techniques for the quintic Duffing equation, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.03.050 · Zbl 1193.65142
[17] Adomian, G., Stochastic Systems (1983), Academic Press, Inc.: Academic Press, Inc. New York · Zbl 0504.60067
[18] Adomian, G., Nonlinear Stochastic Operator Equations (1986), Academic Press Inc.: Academic Press Inc. New York · Zbl 0614.35013
[19] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer: Kluwer Boston · Zbl 0802.65122
[20] He, Ji-H., Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[21] He, Ji-H., Addendum: new interpretation of homotopy perturbation method, Int. J. Modern Phys., 20, 2561-2568 (2006)
[22] He, Ji-H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017
[23] Liao, S.-J., An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int. J. Nonlinear Mech., 38, 1173-1183 (2003) · Zbl 1348.74225
[24] Liao, S. J., Beyond Perturbation (2003), CRC Press: CRC Press Boca Raton, FL
[25] Xu, L., He’s parameter-expanding methods for strongly nonlinear oscillators, J. Comput. Appl. Math., 207, 148-154 (2007) · Zbl 1120.65084
[26] Hu, H., A classical perturbation technique that works even when the linear part of restoring force is zero, J. Sound Vibr., 271, 1175-1179 (2004) · Zbl 1236.34082
[27] Pierre, C.; Dowell, E. H., A study of dynamic instability of plates by an extended incremental harmonic balance method, ASME J. Appl. Mech., 52, 693-697 (1985) · Zbl 0568.73053
[28] Pierre, C.; Ferri, A. A.; Dowell, E. H., Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method, ASME J. Appl. Mech., 52, 958-964 (1985) · Zbl 0584.73109
[29] Lau, S. L.; Cheung, Y. K., Amplitude incremental variational principle for nonlinear vibration of elastic systems, ASME J. Appl. Mech., 48, 959-964 (1981) · Zbl 0468.73066
[30] Lau, S. L.; Cheung, Y. K.; Wu, S. Y., A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems, ASME J. Appl. Mech., 49, 849-853 (1982) · Zbl 0503.73031
[31] Ferri, A. A., On the equivalence of the incremental harmonic balance method and the harmonic balance-Newton Raphson method, ASME J. Appl. Mech., 53, 455-457 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.