×

Class-invariants: examples of higher-dimensional nonvanishing. (Invariants de classes: exemples de non-annulation en dimension supérieure.) (French. English summary) Zbl 1137.11042

Let \(G\) be a finite flat group scheme over \(S = \text{Spec}(R)\) where \(R\) is the ring of integers in a number field \(K\). We furthermore assume that \(G\) is the kernel of an isogeny \({\mathcal A} \rightarrow {\mathcal B}\) between the Néron models \({\mathcal A}, {\mathcal B}\) of abelian varieties \(A, B\) over \(K\). It was conjectured by M. J. Taylor [Ill. J. Math. 32, 428–452 (1988; Zbl 0631.14033)] and later proved by A. Srivastav and M. J. Taylor [Invent. Math. 99, 165–184 (1990; Zbl 0705.14031)] and A. Agboola [Invent. Math. 123, 105–122 (1996; Zbl 0864.11055)] that the associated class-invariant homomorphism \(\psi: {\mathcal B}(S) \rightarrow \text{Pic}(G^D)\) vanishes on torsion points in the case \(A,B\) are elliptic curves and the order of \(G\) is coprime to \(6\).
In the paper under review, the author constructs examples where \(\psi\) does not vanish on torsion points. In these examples \(G=\mu_p\), the abelian variety \(A\) is the Weil restriction of an elliptic curve \(E_{K'}\) over a finite extension \(K'\) of \(K\) where the elements of \(\text{Pic}(R)[p]\) capitulate, \(E_{K'}\) has good reduction over \(p\) and \(E_{K'}(K')\) is a finite group containing an element of order \(p\). A crucial step in the author’s construction is a theorem giving a rather general situation when the coboundary map \({\mathcal B}(S) \rightarrow H^1(S, G)\) is surjective.

MSC:

11G10 Abelian varieties of dimension \(> 1\)
14K15 Arithmetic ground fields for abelian varieties
11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers

Software:

ecdata

References:

[1] Agboola, A., A geometric description of the class invariant homomorphism, J. Théor. Nombres Bordeaux, 6, 273-280 (1994) · Zbl 0833.11055
[2] Agboola, A., Torsion points on elliptic curves and Galois module structure, Invent. Math., 123, 105-122 (1996) · Zbl 0864.11055 · doi:10.1007/BF01232369
[3] Agboola, A.; Pappas, G., Lines bundles, rational points, and ideal classes, Math. Res. Lett., 7, 1-9 (2000) · Zbl 1029.14008
[4] Anantharaman, S., Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Bull. Soc. Math. France Suppl. Mém., 33, 5-79 (1973) · Zbl 0286.14001
[5] Berthelot, P., Breen, L., Messing, W.: Théorie de Dieudonné cristalline II. Lect. Notes Math. 930. Springer, Heidelberg (1982) · Zbl 0516.14015
[6] Bley, W.; Klebel, M., An infinite family of elliptic curves and Galois module structure, Pacific J. Math., 185, 221-235 (1998) · Zbl 0979.11032 · doi:10.2140/pjm.1998.185.221
[7] Bosch, S., Lütkebohmert, W., Raynaud, M. : Néron Models. Ergeb. Math. Grenzgeb. (3), vol. 21. Springer, Heidelberg (1990) · Zbl 0705.14001
[8] Cassou-Noguès, Ph.; Jehanne, A., Espaces homogènes principaux et points de 2-division de courbes elliptiques, J. London Math. Soc., 63, 2, 257-287 (2001) · Zbl 1043.11077 · doi:10.1017/S0024610700001812
[9] Cremona, J., Algorithms for Modular Elliptic Curves (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0758.14042
[10] Edixhoven, B., Néron models and tame ramification, Compost. Math., 81, 3, 91-306 (1992) · Zbl 0759.14033
[11] Fontaine, J.-M., Il n’y a pas de variété abélienne sur Z, Invent. Math., 81, 3, 515-538 (1985) · Zbl 0612.14043 · doi:10.1007/BF01388584
[12] Gillibert, J., Invariants de classes: le cas semi-stable, Compost. Math., 141, 887-901 (2005) · Zbl 1173.11353 · doi:10.1112/S0010437X05001594
[13] Gillibert, J., Variétés abéliennes et invariants arithmétiques, Ann. Inst. Fourier, 56, fasc. 2, 277-297 (2006) · Zbl 1091.11021
[14] Gillibert, J. : Invariants de classes : propriétés fonctorielles et applications à l’étude du noyau. Preprint, http ://arxiv.org/abs/math. NT/0512365 · Zbl 1200.11084
[15] Grothendieck, A., Dieudonné, J. : Éléments de géométrie algébrique, chapitre II : Étude globale élémentaire de quelques classes de morphismes. Publ. Math. Inst. Hautes Études Sci., vol. 8 (1961)
[16] Grothendieck, A., Dieudonné, J. : Éléments de géométrie algébrique, chapitre III : Étude cohomologique des faisceaux cohérents, Première partie. Publ. Math. Inst. Hautes Études Sci., vol. 11 (1961)
[17] Grothendieck, A. : Groupes de monodromie en géométrie algébrique. Lect. Notes Math., vol. 288. Springer, Heidelberg (1972) · Zbl 0237.00013
[18] Kamienny, S., Torsion points on elliptic curves, Bull. Am. Math. Soc., 23, 2, 371-373 (1990) · Zbl 0714.11033 · doi:10.1090/S0273-0979-1990-15935-X
[19] Pappas, G., On torsion line bundles and torsion points on abelian varieties, Duke Math. J., 91, 215-224 (1998) · Zbl 1029.11020 · doi:10.1215/S0012-7094-98-09110-4
[20] Pappas, G., Galois modules and the theorem of the cube, Invent. Math., 133, 193-225 (1998) · Zbl 0923.14030 · doi:10.1007/s002220050244
[21] Pappas, G.: Galois modules, ideal class groups and cubic structures. Preprint (2003)
[22] Srivastav, A.; Taylor, M. J., Elliptic curves with complex multiplication and Galois module structure, Invent. Math., 99, 165-184 (1990) · Zbl 0705.14031 · doi:10.1007/BF01234415
[23] Taylor, M. J., Mordell-Weil groups and the Galois module structure of rings of integers, Illinois J. Math., 32, 428-452 (1988) · Zbl 0631.14033
[24] Waterhouse, W. C., Principal homogeneous spaces and group scheme extensions, Trans. Am. Math. Soc., 153, 181-189 (1971) · Zbl 0208.48401 · doi:10.2307/1995554
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.