×

On the streamfunction – vorticity formulation in sliding bi-period frames: application to bulk behavior for polymer blends. (English) Zbl 1136.76386

Summary: The Lees — Edwards description of bi-periodic boundary conditions [J. Phys. C 5, 1921 (1972)] has been extended to the streamfunction and streamfunction — vorticity formulation in sliding bi-periodic frames. The required compatibility conditions are formulated and uniqueness of the solution is shown. The model has been implemented in a spectral element method context to describe bulk shear behavior far away from walls, where no simple periodic boundary conditions can be used. In the numerical model a Lagrangian multiplier is introduced to couple the shearing boundaries. The proposed method has been validated for a mathematical test problem; convergence is shown and the influence of the order of approximation of the Lagrangian multiplier is studied. Finally, results are presented for drop coalescence across the boundaries of the bi-periodic frame.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76T25 Granular flows

Software:

HSL
Full Text: DOI

References:

[1] Tucker, C. L.; Moldenaers, P., Microstructural evolution in polymer blends, Ann. Rev. Fluid Mech., 34, 177-210 (2002) · Zbl 1047.76503
[2] Lees, A. W.; Edwards, S. F., The computer study of transport properties under extreme conditions, J. Phys. C: Solid State Phys., 5, 1921 (1972)
[3] Wagner, A. J.; Pagonabarraga, I., Lees Edwards boundary conditions for lattice Boltzmann, J. Stat. Phys., 107, 521 (2002) · Zbl 1007.82008
[4] Wagner, A. J.; Yeomans, J. M., Phase separation under shear in two-dimensional binary fluids, Phys. Rev. E, 59, 4366-4373 (1999)
[5] Lamura, A.; Gonnella, G., Lattice Boltzmann simulations of segregating binary fluid mixtures in shear flow, Physica A, 2001, 295 (2001) · Zbl 0978.76071
[6] Doi, M.; Yuan, X. F., A general approach for modelling complex fluids: its application to concentrated emulsions under shear, Colloids Surf. A, 144, 305 (1998)
[7] Hwang, W. R.; Hulsen, M. A.; Meijer, H. E.H., Direct simulation of particle suspensions in sliding bi-periodic frames, J. Comput. Phys., 194, 742-772 (2004) · Zbl 1100.76539
[8] Quartapelle, L.; Valz-Gris, F., Projection conditions on the vorticity in viscous incompressible flows, Int. J. Numer. Meth. Fluids, 1, 129-144 (1981) · Zbl 0465.76028
[9] Belgacem, F. B., The mortar finite element method with Lagrangian multipliers, Numer. Math., 84, 173-197 (1999) · Zbl 0944.65114
[10] Patera, A. T., A spectral element method for fluid dynamics, J. Comput. Phys., 54, 468-488 (1984) · Zbl 0535.76035
[11] Timmermans, L. J.P.; van de Vosse, F. N.; Minev, P. D., Taylor-Galerkin-based spectral element methods for convection-diffusion problems, Int. J. Numer. Meth. Fluids, 18, 853-870 (1994) · Zbl 0807.76063
[12] M. Verschueren, P.D. Anderson, F.N. van de Vosse, A high order interface capturing technique for structure development in binary fluids, in: ICOSAHOM’98, J. Non-Newton. Fluid June 22-26, Herzliya, Israel, 1998.; M. Verschueren, P.D. Anderson, F.N. van de Vosse, A high order interface capturing technique for structure development in binary fluids, in: ICOSAHOM’98, J. Non-Newton. Fluid June 22-26, Herzliya, Israel, 1998.
[13] HSL, A collection of Fortran codes for large scale scientific computation, 2002. Available from: <http://www.cse.clrc.ac.uk/nag/hsl/>; HSL, A collection of Fortran codes for large scale scientific computation, 2002. Available from: <http://www.cse.clrc.ac.uk/nag/hsl/>
[14] Seshaiyer, P.; Suri, M., hp Submeshing via non-conforming finite element methods, Comput. Methods Appl. Mech. Eng., 189, 1011-1030 (2000) · Zbl 0971.65101
[15] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051
[16] J. Lowengrub, J. Goodman, H. Lee, E.K. Longmire, M.J. Shelley, L. Truskinovsky, Topological transitions in liquid/liquid interfaces, in: I. Athanasopoulos, M. Makrakis, J.F. Rodrigues (Eds.), Proceedings of the 1997 International Congress on Free Boundary Problems, Pitman Research Notes, Addison-Wesley Longman, 1998.; J. Lowengrub, J. Goodman, H. Lee, E.K. Longmire, M.J. Shelley, L. Truskinovsky, Topological transitions in liquid/liquid interfaces, in: I. Athanasopoulos, M. Makrakis, J.F. Rodrigues (Eds.), Proceedings of the 1997 International Congress on Free Boundary Problems, Pitman Research Notes, Addison-Wesley Longman, 1998. · Zbl 0929.35191
[17] Naumann, E. B.; He, D. Q., Nonlinear diffusion and phase separation, Chem. Eng. Sci., 56, 1999-2018 (2001)
[18] Chella, R.; Viñals, J., Mixing of a two-phase fluid by cavity flow, Phys. Rev. E, 53, 4, 3832-3840 (1996)
[19] D. Jacqmin, An energy approach to the continuum surface tension method, in: Proc. 34th Aerosp. Sci. Meet. Exh., Am. Inst. Aeron. Astron., AIAA 96-0858, Reno, 1996.; D. Jacqmin, An energy approach to the continuum surface tension method, in: Proc. 34th Aerosp. Sci. Meet. Exh., Am. Inst. Aeron. Astron., AIAA 96-0858, Reno, 1996.
[20] Roths, T.; Friedrich, C.; Marth, M.; Honerkamp, J., Dynamics and rheology of the morphology of immiscible polymer blends - on modeling and simulation, Rheol. Acta, 41, 211-222 (2002)
[21] Keestra, B. J.; Van Puyvelde, P. C.J.; Anderson, P. D.; Meijer, H. E.H., Diffuse interface modeling of the morphology and rheology of immiscible polymer blends, Phys. Fluids, 15, 9, 2567-2575 (2003) · Zbl 1186.76273
[22] Liu, C.; Yue, P.; Feng, J. J.; Shen, J., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515, 293-317 (2004) · Zbl 1130.76437
[23] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial energy, J. Chem. Phys., 28, 2, 258-267 (1958) · Zbl 1431.35066
[24] M. Verschueren, A diffuse-interface model for structure development in flow. PhD thesis, Eindhoven University of Technology, the Netherlands, 1999.; M. Verschueren, A diffuse-interface model for structure development in flow. PhD thesis, Eindhoven University of Technology, the Netherlands, 1999.
[25] Windhab, E. J.; Dressler, M.; Feigl, K.; Fischer, P.; Megias-Alguacil, D., Emulsion processing - from single drop deformation to design of complex processes and products, Chem. Eng. Sci., 60, 2101-2113 (2005)
[26] I. Vinckier, Microstructural analysis and rheology of immiscible polymer blends, PhD thesis, Katholieke Universiteit Leuven, Belgium, 1996.; I. Vinckier, Microstructural analysis and rheology of immiscible polymer blends, PhD thesis, Katholieke Universiteit Leuven, Belgium, 1996.
[27] Jansseune, T.; Mewis, J.; Moldenaers, P.; Minale, M.; Maffettone, P. L., Rheology and rheological morphology determination in immiscible two-phase polymer model blends, J. Non-Newton Fluid Mech., 93, 153-165 (2000) · Zbl 0985.76004
[28] Takahashi, Y.; Kurashima, N.; Noda, I.; Doi, M., Experimental tests of the scaling relation for textured materials in mixtures of two immiscible fluids, J. Rheol., 38, 699-712 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.