×

Solvability of partial differential equations by meshless kernel methods. (English) Zbl 1136.65111

Summary: This paper first provides a common framework for partial differential equation problems in both strong and weak form by rewriting them as generalized interpolation problems. Then it is proven that any well-posed linear problem in strong or weak form can be solved by certain meshless kernel methods to any prescribed accuracy.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI

References:

[1] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950) · Zbl 0037.20701 · doi:10.1090/S0002-9947-1950-0051437-7
[2] Atluri, S.N., Kim, H.-G., Cho, J.Y.: A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) and local boundary integral equation (LBIE) methods. Comput. Mech. 24, 348–372 (1999) · Zbl 0977.74593 · doi:10.1007/s004660050457
[3] Atluri, S.N., Zhu, T.L.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998) · Zbl 0932.76067 · doi:10.1007/s004660050346
[4] Atluri, S.N., Zhu, T.L.: The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25, 169–179 (2000) · Zbl 0976.74078 · doi:10.1007/s004660050467
[5] Atluri, S.N., Shen, S.: The meshless local Petrov–Galerkin (mlpg) method: A simple & less-costly alternative to the finite element and boundary element methods. Comput. Model. Eng. Sci. 3, 11–51 (2002) · Zbl 0996.65116
[6] Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997) · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[7] Babuška, I., Banerjee, U., Osborn, J.E.: Meshless and generalized finite element methods: A survey of some major results. In: Meshfree Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering 26, pp. 1–20. Springer, Berlin Heidelberg New York (2002) · Zbl 1012.65119
[8] Beatson, R.K., Light, W.A., Billings, S.: Fast solution of the radial basis function interpolation equations: Domain decomposition methods. SIAM J. Sci. Comput. 22, 1717–1740 (2000) · Zbl 0982.65015 · doi:10.1137/S1064827599361771
[9] Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 375–387 (2002) · Zbl 0999.41005
[10] Brown, D., Ling, L., Kansa, E., Levesley, J.: On approximate cardinal preconditioning methods for solving PDEs with radial basis functions. Eng. Anal. Bound. Elem. 19, 343–353 (2005) · Zbl 1182.65174 · doi:10.1016/j.enganabound.2004.05.006
[11] Chen, J.S., Pan, C., Wu, C.T.: Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 139, 195–227 (1996) · Zbl 0918.73330 · doi:10.1016/S0045-7825(96)01083-3
[12] de Marchi, St., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comp. Math. 23, 317–330 (2005) · Zbl 1070.65008 · doi:10.1007/s10444-004-1829-1
[13] Dubal, M.R.: Domain decomposition and local refinement for multiquadric approximations. I. Second-order equations in one-dimension. J. Appl. Sci. Comput. 1, 146–171 (1994)
[14] Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 131–138. Vanderbilt University Press Nashville (1997) · Zbl 0938.65140
[15] Faul, A.C., Powell, M.J.D.: Proof of convergence of an iterative technique for thin plate spline interpolation in two dimensions. Adv. Comput. Math. 11, 183–192 (1999) · Zbl 0944.65015 · doi:10.1023/A:1018923925800
[16] Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998) · Zbl 0909.65088 · doi:10.1023/A:1018916902176
[17] Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comp. 93, 73–82 (1998) · Zbl 0943.65133 · doi:10.1016/S0096-3003(97)10104-7
[18] Golberg, M.A., Chen, C.S.: The Method of Fundamental Solutions for Potential, Helmholtz and Diffusion Problems. Computational Mechanics, Southampton, Boston (1998) · Zbl 0945.65130
[19] Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. J. Appl. Math. Comput. 119, 177–186 (2001) · Zbl 1026.65107 · doi:10.1016/S0096-3003(99)00255-6
[20] Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32, 13–25 (2003) · Zbl 1019.65093 · doi:10.1023/A:1022253303343
[21] Hon, Y.C., Wei, T.: A fundamental solution method for inverse heat conduction problem. Eng. Anal. Bound. Elem. 28, 489–495 (2004) · Zbl 1073.80002 · doi:10.1016/S0955-7997(03)00102-4
[22] Hon, Y.C., Wu, Z.: Additive Schwarz domain decomposition with a radial basis approximation. Int. J. Appl. Math. 4, 81–98 (2000) · Zbl 1051.65121
[23] Hon, Y.C., Wu, Z.: A numerical computation for inverse boundary determination problems. Eng. Anal. Bound. Elem. 24, 599–606 (2000) · Zbl 0972.65085 · doi:10.1016/S0955-7997(00)00040-0
[24] Ingber, M.S., Chen, C.S., Tanski, J.A.: A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations. Int. J. Numer. Methods Eng. 60, 2183–2201 (2004) · Zbl 1178.76276 · doi:10.1002/nme.1043
[25] Jost, J.: Partial Differential Equations, vol. 214 of Graduate Texts in Mathematics. Springer, Berlin Heidelberg New York (2002). Translated and revised from the 1998 German original by the author
[26] Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. In: Proc. 1986 Simul. Conf., vol. 4, pp. 111–117, 1986
[27] Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003) · Zbl 1049.65136 · doi:10.1016/S0898-1221(03)90151-9
[28] Li, J., Hon, Y.C.: Domain decomposition for radial basis meshless methods. Numer. Methods PDEs 20, 450–462 (2004) · Zbl 1048.65124
[29] Liew, K.M., Ng, T.Y., Wu, Y.C.: Meshfree method for large deformation analysis – A reproducting kernel particle approach. Engineering Structures 24, 543–551 (2002) · doi:10.1016/S0141-0296(01)00120-1
[30] Ling, L., Kansa, E.J.: Preconditioning for radial basis functions with domain decomposition methods. Math. Comput. Modelling (to appear) (2004) · Zbl 1077.41008
[31] Ling, L., Kansa, E.J.: A least-squares preconditioner for radial basis functions collocation methods. Adv. Comput. Math. 23(1–2), 31–54 (2005) · Zbl 1067.65136 · doi:10.1007/s10444-004-1809-5
[32] Ling, L., Schaback, R.: On adaptive unsymmetric meshless collocation. In: Atluri, S.N., Tadeu, A.J.B. (eds.) Proceedings of the 2004 International Conference on Computational & Experimental Engineering and Sciences, volume CD-ROM, Forsyth, USA, 2004. Advances in Computational & Experimental Engineering & Sciences, Tech Science. paper # 270. · Zbl 1167.65059
[33] Melenk, J.M., Babuška, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[34] Meschkowski, H.: Hilbertsche Räume mit Kernfunktion. Springer, Berlin Heidelberg New York (1962) · Zbl 0103.08802
[35] Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2005) · Zbl 1063.41013
[36] Opfer, R.: Multiscale kernels. (ISBN 3-8322-3521-3), Shaker Verlag (2004) · Zbl 1097.65553
[37] Power, H., Barraco, V.: A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations. Comput. Math. Appl. 43, 551–583 (2002) · Zbl 0999.65135 · doi:10.1016/S0898-1221(01)00305-4
[38] Schaback, R.: Approximation by radial basis functions with finitely many centers. Constr. Approx. 12, 331–340 (1996) · Zbl 0855.41011 · doi:10.1007/BF02433047
[39] Schaback, R.: Convergence of unsymmetric kernel-based meshless collocation methods. Preprint Göttingen, 2005 · Zbl 1165.65066
[40] Schaback, R., Wendland, H.: Characterization and construction of radial basis functions. In: Dyn, N., Leviatan, D., Levin, D., Pinkus, A. (eds.) Multivariate Approximation and Applications, pp. 1–24. Cambridge University Press (2001) · Zbl 1035.41013
[41] Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000) · Zbl 0957.65021 · doi:10.1023/A:1019105612985
[42] Schaback, R., Wendland, H.: Kernel techniques: From machine learning to meshless methods. To appear in Acta Numerica (2006) · Zbl 1111.65108
[43] Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995) · Zbl 0838.41014 · doi:10.1007/BF02123482
[44] Wendland, H.: Meshless Galerkin methods using radial basis functions. Math. Comput. 68(228), 1521–1531 (1999) · Zbl 1020.65084 · doi:10.1090/S0025-5718-99-01102-3
[45] Wendland, H.: Fast evaluation of radial basis functions: Methods based on partition of unity. In: Chui, C.K., Schumaker, L.L., Stöckler, J. (eds.) Approximation Theory X: Wavelets, Splines, and Applications, pp. 473–483. Vanderbilt University Press (2002) · Zbl 1031.65022
[46] Wendland, H.: Solving large generalized interpolation problems efficiently. In: Neamtu, M., Saff, E.B. (eds.) Advances in Constructive Approximation, pp. 509–518. Nashboro, Brentwood, Tennessee (2004) · Zbl 1059.65011
[47] Wu, Z.: Hermite–Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory its Appl. 8(2), 1–10 (1992) · Zbl 0757.41009
[48] Wu, Z.: Multivariate compactly supported positive definite radial functions. Adv. Comput. Math. 4, 283–292 (1995) · Zbl 0837.41016 · doi:10.1007/BF03177517
[49] Yoon, J.: Spectral approximation orders of radial basis function interpolation on the Sobolev space. SIAM J. Numer. Anal. 33, 946–958 (2001) · Zbl 0996.41002
[50] Yoon, J.: Error estimates for shifted surface spline interpolation on Sobolev space. Math. Comput. 72, 1349–1367 (2003) · Zbl 1017.41003
[51] Yoon, S., Chen, J.S.: Accelerated meshfree method for metal forming simulation. Finite Elem. Anal. Des. 38, 937–948 (2002) · Zbl 1100.74648 · doi:10.1016/S0168-874X(02)00086-0
[52] Zhou, X., Hon, Y.C., Li, J.: Overlapping domain decomposition method by radial basis functions. Appl. Numer. Math. 44, 241–255 (2003) · Zbl 1013.65134 · doi:10.1016/S0168-9274(02)00107-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.