×

Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. (English) Zbl 1063.41013

Authors’ abstract: We discuss Sobolev bounds on functions that vanish at scattered points in a bounded, Lipschitz domain that satisfies a uniform interior cone condition. The Sobolev spaces involved may have fractional as well as integer order. We then apply these results to obtain estimates for continuous and discrete least squares surface fits via radial basis functions (RBFs). These estimates include situations in which the target function does not belong to the native space of the RBF.

MSC:

41A25 Rate of convergence, degree of approximation
41A63 Multidimensional problems
Full Text: DOI

References:

[1] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. · Zbl 0804.65101
[2] R. Brownlee and W. Light, Approximation orders for interpolation by surface splines to rough functions, IMA J. Numer. Anal., 24 (2004), 179-192. · Zbl 1084.41003
[3] Carl de Boor, Ronald A. DeVore, and Amos Ron, Approximation from shift-invariant subspaces of \?\(_{2}\)(\?^{\?}), Trans. Amer. Math. Soc. 341 (1994), no. 2, 787 – 806. · Zbl 0790.41012
[4] Ronald A. DeVore and Robert C. Sharpley, Besov spaces on domains in \?^{\?}, Trans. Amer. Math. Soc. 335 (1993), no. 2, 843 – 864. · Zbl 0766.46015
[5] Jean Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les \?^{\?}-splines, RAIRO Anal. Numér. 12 (1978), no. 4, 325 – 334, vi (French, with English summary). · Zbl 0403.41003
[6] W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988), no. 4, 77 – 89. · Zbl 0703.41008
[7] W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions. II, Math. Comp. 54 (1990), no. 189, 211 – 230. · Zbl 0859.41004
[8] W. R. Madych and E. H. Potter, An estimate for multivariate interpolation, J. Approx. Theory 43 (1985), no. 2, 132 – 139. · Zbl 0558.41008 · doi:10.1016/0021-9045(85)90121-2
[9] Charles A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986), no. 1, 11 – 22. · Zbl 0625.41005 · doi:10.1007/BF01893414
[10] F. J. Narcowich and J. D. Ward, Scattered-data interpolation on \(\mathbb{R} ^n:\) Error estimates for radial basis and band-limited functions, SIAM J. Math. Anal., to appear. · Zbl 1081.41014
[11] F. J. Narcowich, J. D. Ward, and H. Wendland, Refined error estimates for radial basis function interpolation, Constr. Approx., 19 (2003), 541-564. · Zbl 1049.41011
[12] Amos Ron, The \?\(_{2}\)-approximation orders of principal shift-invariant spaces generated by a radial basis function, Numerical methods in approximation theory, Vol. 9 (Oberwolfach, 1991) Internat. Ser. Numer. Math., vol. 105, Birkhäuser, Basel, 1992, pp. 245 – 268. · Zbl 0820.41014 · doi:10.1007/978-3-0348-8619-2_14
[13] R. Schaback, Approximation by radial basis functions with finitely many centers, Constr. Approx. 12 (1996), no. 3, 331 – 340. · Zbl 0855.41011 · doi:10.1007/s003659900017
[14] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[15] Holger Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), no. 4, 389 – 396. · Zbl 0838.41014 · doi:10.1007/BF02123482
[16] Holger Wendland, Meshless Galerkin methods using radial basis functions, Math. Comp. 68 (1999), no. 228, 1521 – 1531. · Zbl 1020.65084
[17] Holger Wendland, Local polynomial reproduction and moving least squares approximation, IMA J. Numer. Anal. 21 (2001), no. 1, 285 – 300. · Zbl 0976.65013 · doi:10.1093/imanum/21.1.285
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.