×

Principal eigenvalues with indefinite weight functions. (English) Zbl 0877.35083

Principle eigenvalues of the eigenvalue problem with indefinite weight for the Laplace operator are considered. Both existence and non-existence are proved as well as existence of a continuous family of principle eigenvalues.
Reviewer: S.Tersian (Russe)

MSC:

35P05 General topics in linear spectral theory for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI

References:

[1] W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in \?\(^{n}\), Proc. Amer. Math. Soc. 116 (1992), no. 3, 701 – 706. · Zbl 0764.35031
[2] Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. · Zbl 0512.53044
[3] K. J. Brown, C. Cosner, and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on \?\(^{n}\), Proc. Amer. Math. Soc. 109 (1990), no. 1, 147 – 155. · Zbl 0726.35089
[4] K. J. Brown, S. S. Lin, and A. Tertikas, Existence and nonexistence of steady-state solutions for a selection-migration model in population genetics, J. Math. Biol. 27 (1989), no. 1, 91 – 104. · Zbl 0714.92011 · doi:10.1007/BF00276083
[5] K. J. Brown and A. Tertikas, On the bifurcation of radially symmetric steady-state solutions arising in population genetics, SIAM J. Math. Anal. 22 (1991), no. 2, 400 – 413. · Zbl 0739.34031 · doi:10.1137/0522026
[6] K. J. Brown and A. Tertikas, The existence of principal eigenvalues for problems with indefinite weight function on \?^{\?}, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 3, 561 – 569. · Zbl 0804.35095 · doi:10.1017/S0308210500025889
[7] W. H. Fleming, A selection-migration model in population genetics, J. Math. Biol. 2 (1975), no. 3, 219 – 233. · Zbl 0325.92009 · doi:10.1007/BF00277151
[8] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[9] Yoon-Tae Jung, On the elliptic equation (4(\?-1)/(\?-2))\Delta \?+\?(\?)\?^{(\?+2)/(\?-2)}=0 and the conformal deformation of Riemannian metrics, Indiana Univ. Math. J. 43 (1994), no. 3, 737 – 746. · Zbl 0818.35026 · doi:10.1512/iumj.1994.43.43032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.