×

A geometry on the space of probabilities. II: Projective spaces and exponential families. (English) Zbl 1122.46039

Summary: We continue a theme taken up in Part I, see [H.Gzyl and L.Recht, Rev.Mat.Iberom.22, 545–558 (2006; Zbl 1121.46043)], namely, to provide a geometric interpretation of exponential families as endpoints of geodesics of a non-metric connection in a function space. For that, we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a homogeneous reductive space in the class of all bounded complex valued functions. We develop everything in a generic \({\mathcal C}^*\)-algebra setting, but have the function space model in mind.

MSC:

46L05 General theory of \(C^*\)-algebras
53C05 Connections (general theory)
53C56 Other complex differential geometry
60B99 Probability theory on algebraic and topological structures
60E05 Probability distributions: general theory
53C30 Differential geometry of homogeneous manifolds
32M99 Complex spaces with a group of automorphisms
62A01 Foundations and philosophical topics in statistics
94A17 Measures of information, entropy
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
28A33 Spaces of measures, convergence of measures

Citations:

Zbl 1121.46043

References:

[1] Amari, S.: Differential geometry of curved exponential families. Curvature and information loss. Ann. Statist. 10 (1982), no. 2, 357-385. · Zbl 0507.62026 · doi:10.1214/aos/1176345779
[2] Amari, S. and Nagaoka, H.: Methods of information geometry . Translations of Mathematical Monographs 191 . American Mathematical Society, Providence, RI, 2000; Oxford University Press, Oxford, 2000. · Zbl 0960.62005
[3] Barndorff-Nielsen, O.: Information and exponential families in statistical theory. Wiley Series in Probability and Mathematical Statistics. Wiley, Chichester, 1978. · Zbl 0387.62011
[4] Corach, G.; Porta, H. and Recht, H.: The geometry of the space of selfadjoint invertible elements in a \(C^*\)-algebra. Integral Equations Operator Theory 16 (1993), no. 3, 335-359. · Zbl 0786.58006 · doi:10.1007/BF01204226
[5] Efron, B.: The geometry of exponential families. Ann. Statist. 6 (1975), no. 2, 362-376. · Zbl 0436.62027 · doi:10.1214/aos/1176344130
[6] Escher, F.: On the probability function in the collective theory of risk. Scandinavisk Aktuarietidskrift 15 (1932), 175-195. · Zbl 0004.36101
[7] Gibilisco, P. and Isola, T.: Connections on statistical manifolds of density operators by geometry of non-commutative \(L_p\) spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), no. 1, 169-178. · Zbl 1040.46502 · doi:10.1142/S0219025799000096
[8] Gzyl, H. and Recht, L.: The geometry on the class of probabilities I: The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558. · Zbl 1121.46043 · doi:10.4171/RMI/465
[9] Grasselli,. M. R. and Streater, R. F.: On the uniqueness of the Chenstov metric in quantum information theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001), no. 2, 173-182. · Zbl 1039.81011 · doi:10.1142/S0219025701000462
[10] Jaynes, E.: Information Theory and Statistical Physics. Phys. Rev. 106 (1957), 620-630. · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[11] Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry , vol. II. Interscience Tracts in Pure and Applied Mathematics 15 , vol. II. Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1969. · Zbl 0175.48504
[12] Kullback, S.: Information Theory and Statistics . Dover Pubs. New York, 1968.
[13] Kullback, S., Keegel, J. and Kullback, J.: Topics in Statistical Information Theory . Lecture Notes in Statistics 42 . Springer-Verlag, Berlin, 1987. · Zbl 0632.62003
[14] Pedersen, G.: \(C^*\)-Algebras and their Automorphism Groups . London Mathematical Society Monographs 14 . Academic Press, London-New York, 1979. · Zbl 0416.46043
[15] Porta, H. and Recht, L.: Conditional expectations and operator decompositions. Ann. Global Anal. Geom. 12 (1994), no. 4, 335-339. · Zbl 0829.58004 · doi:10.1007/BF02108305
[16] Porta, H. and Recht, L.: Exponential sets and their geometric motions. J. Geom. Anal. 6 (1996), no. 2, 277-285. · Zbl 0904.58003 · doi:10.1007/BF02921602
[17] Pistone, G. and Rogantin, M. P.: The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5 (1999), no. 4, 721-760. · Zbl 0947.62003 · doi:10.2307/3318699
[18] Pistone, G. and Sempi, C.: An infinite dimensional geometric structure on the space of all probability measures equivalent to a given one. Ann. Statist. 23 (1995), no. 5, 1543-1561. · Zbl 0848.62003 · doi:10.1214/aos/1176324311
[19] Vajda, I.: Theory of statistical inference and information . Kluwer Acad. Pubs., Dordrecht, 1989. · Zbl 0711.62002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.