×

Connections on statistical manifolds of density operators by geometry of noncommutative \(L^p\)-spaces. (English) Zbl 1040.46502

A noncommutative generalization of the Amari-Chentsov \(\alpha\)-connection of P. Gibilisco and G. Pistone [Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 325–347 (1998; Zbl 0921.62004)] is formulated. For a semifinite von Neumann algebra \(M\) with a normal semifinite faithful trace \(\tau\), let \(\mathfrak M_\tau\) be the set of all density operators, namely positive elements \(\rho\) of the noncommutative \(L^ 1\) space \(L^ 1(M,\tau )\) with \(\tau (\rho )=1\) and with support \(1\) (in bijective correspondence with the set of all normal faithful states \(\tau_ \rho\) of \(M\)). Any subset \(N\) of \(\mathfrak M_ \tau\) which is a Banach manifold is called a statistical manifold.
For \(\alpha \in (-1,1)\) and \(p=2/(1-\alpha )\), a vector bundle \(\mathcal F^ {\alpha}\) on \(N\) is defined as the union of the set \(\mathcal F^ {\alpha}_\rho\) of all elements \(v\) of the noncommutative \(L^ p\) space \(L^ p(M,\tau_\rho)\) satisfying \(\text{ Re}\int vd\tau_\rho=0\), the union taken over all \(\rho\) in \(N\) (Definition 5.3).
The trivial connection on \(L^ p(M,\tau_\rho)\) induces the natural connection on its unit ball \(S^ p\) by the projection of tangent spaces. The \(\alpha\)-connection \(\nabla^\alpha\) on \(\mathcal F^\alpha\) is defined using the pullback of the natural connection on \(S^ p\) by the Amari embedding \[ A^\alpha\colon \rho\in N\rightarrow\rho^{1/p}\in S^ p. \] This construction of the \(\alpha\)-bundle-connection pair \((\mathcal F^\alpha,\nabla^\alpha)\) reduces to the Amari-Chentsov \(\alpha\)-bundle-connection pair for the commutative case (Theorem 5.1).

MSC:

46L87 Noncommutative differential geometry
46L60 Applications of selfadjoint operator algebras to physics
82B10 Quantum equilibrium statistical mechanics (general)

Citations:

Zbl 0921.62004
Full Text: DOI

References:

[1] Araki H., Publ. R.I.M.S. Kyoto Univ. 18 pp 339– (1982)
[2] DOI: 10.1016/0022-1236(80)90002-6 · Zbl 0443.46042 · doi:10.1016/0022-1236(80)90002-6
[3] DOI: 10.2140/pjm.1986.123.269 · Zbl 0617.46063 · doi:10.2140/pjm.1986.123.269
[4] DOI: 10.1142/S021902579800017X · Zbl 0921.62004 · doi:10.1142/S021902579800017X
[5] Haagerup U., Colloques Internationaux C.N.R.S. 274 pp 175– (1979)
[6] DOI: 10.1016/0034-4877(93)90043-E · Zbl 0806.62006 · doi:10.1016/0034-4877(93)90043-E
[7] DOI: 10.1007/BF00398324 · Zbl 0855.58070 · doi:10.1007/BF00398324
[8] DOI: 10.1016/0022-1236(81)90065-3 · Zbl 0463.46050 · doi:10.1016/0022-1236(81)90065-3
[9] DOI: 10.1016/0022-1236(84)90025-9 · Zbl 0604.46063 · doi:10.1016/0022-1236(84)90025-9
[10] DOI: 10.2977/prims/1195182447 · Zbl 0529.46049 · doi:10.2977/prims/1195182447
[11] Nagaoka H., IEICE Tech. Rep. 89 pp 9– (1989)
[12] DOI: 10.1016/0022-1236(74)90014-7 · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[13] DOI: 10.1214/aos/1176324311 · Zbl 0848.62003 · doi:10.1214/aos/1176324311
[14] DOI: 10.2307/1969729 · Zbl 0051.34201 · doi:10.2307/1969729
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.