×

Power series rings satisfying a zero divisor property. (English) Zbl 1121.16037

E. P. Armendariz showed that a reduced ring \(R\) has the following property: If \(f(x)\) and \(g(x)\) are polynomials with coefficients in \(R\) and \(f(x)g(x)=0\), then the product of every coefficient of \(f(x)\) with every coefficient of \(g(x)\) is \(0\). Rings whose polynomials satisfy this property are now known as Armendariz rings. In this paper, the authors study rings \(R\) whose power series satisfy the corresponding property. For brevity we shall refer to such rings as being PSWA (power-serieswise Armendariz).
Clearly PSWA rings are Armendariz, and examples are given to show that the reverse implication is not true. It is shown that reduced rings are PSWA, and connections with other classes of rings are investigated. The final section gives some methods for constructing examples of PSWA rings.

MSC:

16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
16S36 Ordinary and skew polynomial rings and semigroup rings
16D25 Ideals in associative algebras
16P60 Chain conditions on annihilators and summands: Goldie-type conditions
Full Text: DOI

References:

[1] DOI: 10.1080/00927879808826274 · Zbl 0915.13001 · doi:10.1080/00927879808826274
[2] DOI: 10.1017/S1446788700029190 · Zbl 0292.16009 · doi:10.1017/S1446788700029190
[3] DOI: 10.1017/S0004972700042052 · Zbl 0191.02902 · doi:10.1017/S0004972700042052
[4] DOI: 10.1090/S0002-9939-1994-1231028-7 · doi:10.1090/S0002-9939-1994-1231028-7
[5] DOI: 10.1016/S0022-4049(00)00055-4 · Zbl 0987.16018 · doi:10.1016/S0022-4049(00)00055-4
[6] DOI: 10.1016/0021-8693(77)90405-7 · Zbl 0393.13004 · doi:10.1016/0021-8693(77)90405-7
[7] Chatters A. W., Rings with Chain Conditions (1980) · Zbl 0446.16001
[8] Gilmer R., J. Reine Angew. Math. 278 pp 145– (1975)
[9] Goodearl K. R., Von Neumann Regular Rings (1979)
[10] Goodearl K. R., An Introduction to Noncommutative Noetherian Rings (1989) · Zbl 0679.16001
[11] DOI: 10.1016/0021-8693(86)90077-3 · Zbl 0595.13012 · doi:10.1016/0021-8693(86)90077-3
[12] DOI: 10.1016/S0022-4049(01)00053-6 · Zbl 1007.16020 · doi:10.1016/S0022-4049(01)00053-6
[13] DOI: 10.1080/00927879808826150 · Zbl 0901.16009 · doi:10.1080/00927879808826150
[14] DOI: 10.1081/AGB-120013179 · Zbl 1023.16005 · doi:10.1081/AGB-120013179
[15] Kaplansky I., Rings of Operators (1968) · Zbl 0174.18503
[16] DOI: 10.1016/0021-8693(90)90057-U · Zbl 0719.16015 · doi:10.1016/0021-8693(90)90057-U
[17] DOI: 10.1006/jabr.1999.8017 · Zbl 0957.16018 · doi:10.1006/jabr.1999.8017
[18] Lee Y., Kyungpook Math. J. 38 pp 421– (1998)
[19] Lee T. K., Houston J. Math. 29 pp 583– (2003)
[20] Narbonne , L. M. de ( 1982 ). Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents . In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981) . Paris : Bib. Nat. , pp. 71 – 73 .
[21] DOI: 10.3792/pjaa.73.14 · Zbl 0960.16038 · doi:10.3792/pjaa.73.14
[22] DOI: 10.1090/S0002-9947-1973-0338058-9 · doi:10.1090/S0002-9947-1973-0338058-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.