×

Two counterexamples in power series rings. (English) Zbl 0595.13012

Un anneau commutatif unitaire R est appelé seminormal si pour b,c\(\in R\) avec \(b^ 3=c^ 2\) il existe \(a\in R\) tel que \(a^ 3=c\) et \(a^ 2=b\). Les AA. donnent un exemple d’anneau R qui est seminormal tel que l’anneau de séries formelles \(R[[ X]]\) n’est pas seminormal et un exemple d’anneau S tel que dans l’anneau \(S[[ X]]\) il existe \(f=\sum^{\infty}_{i=0}a_ iX^ i\quad telle\) que \(f^ 2=0\) et il n’existe pas un entier \(k\geq 0\) tel que \(a^ k_ i=0\) pour tout \(i\in {\mathbb{N}}\). On demontre aussi que pour tout anneau commutatif R et \(f=\sum^{\infty}_{i=0}a_ iX^ i\quad dans\) \(R[[ X]]\) si \(f^ 2=0\) et 2 est inversible dans R, alors \(a_ n^{n+2}=0\) pour tout \(n\in {\mathbb{N}}\) et si \(f^ r=0\) on a \(a^ t_ n=0\) pour \(t\geq 2(r-1)(n+1)\) et si, de plus, r est inversible dans R et \(r\geq 3\) on a \(a^ t_ n=0\) pour \(t\geq (r-2)(2n+3)\).
Reviewer: N.Radu

MSC:

13F25 Formal power series rings
13A99 General commutative ring theory
Full Text: DOI

References:

[1] Brewer, J., Power Series over Commutative Rings, (Lecture Notes in Pure and Applied Mathematics, Vol. 64 (1981)) · Zbl 0476.13015
[2] Brewer, J.; Nichols, W., Seminormality in power series rings, J. Algebra, 82, 282-284 (1983) · Zbl 0512.13013
[3] Hamann, E., On the \(R\)-Invariance of \(R[X]\), J. Algebra, 35, 1-16 (1975) · Zbl 0318.13023
[4] Swan, R., On seminormality, J. Algebra, 67, 210-229 (1980) · Zbl 0473.13001
[5] Traverso, C., Seminormality and Picard groups, Pisa Scuola Norm. Sup. Ann. Ser. 3, 24, 585-595 (1970) · Zbl 0205.50501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.