×

Adaptive remeshing based on a posteriori error estimation for forging simulation. (English) Zbl 1120.74807

Summary: This paper presents a fully automatic 3D adaptive remeshing procedure and its application to non-steady metal forming simulation. Remeshing, here, is considered as the improvement of an existing mesh rather than a complete rebuilding process. The mesh optimization technique is described. It is based on the combination of local improvement of the neighbourhood of nodes and edges. The surface and the volume remeshing are coupled by using a layer of virtual boundary elements. The mesh adaptation is performed by the optimization of the shape factor. The mesh size map enforcement is accounted for working in a locally transformed space. The size map is provided by a Zienkiewicz-Zhu type error estimator. Its accuracy is evaluated in the frame of a velocity/pressure formulation, viscoplastic constitutive equation and 3D linear tetrahedral elements, by numerical experiments. The adaptive remeshing procedure is applied to non-steady forging. Several complex 3D examples show the reliability of the proposed approach to automatically produce optimal meshes at a prescribed computational cost.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C20 Large-strain, rate-dependent theories of plasticity
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Coupez, T.; Chenot, J. L., Large deformations and automatic remeshing, (Hinton, E.; Owen, D. J.R.; Onate, E., Computational Plasticity (COMPLASIII) (1992), Pineridge Press: Pineridge Press Swansea), 1077-1088
[2] Coupez, T., A mesh improvement method for 3d automatic remeshing, (Weatherill, N. P.; etal., Numerical Grid Generation in Computational Fluid Dynamics and Related Fields (1994), Pineridge Press), 615-626 · Zbl 0885.73077
[3] Coupez, T.; Marie, S.; Ducloux, R., Parallel 3d simulation of forming processes including parallel remeshing and reloading, (Désidéri; etal., Numer. Meth. Eng., ECCOMAS (1996), Wiley & Sons), 738-743
[4] Coupez, T.; Fourment, L.; Chenot, J. L., Adaptive solutions in industrial forming process simulation, (Ladeveze, P.; Oden, J. T., Advances in Adaptive Computational Methods in Mechanics, Cachan-Workshop (1998), Elsevier), 365-381
[5] T. Coupez, Adaptive meshing for forming processes, in: M. Cross (Ed.), Numerical Grid Generation in Computational Field Simulation, U. of Greenwich, Mississippi State University, 1998.; T. Coupez, Adaptive meshing for forming processes, in: M. Cross (Ed.), Numerical Grid Generation in Computational Field Simulation, U. of Greenwich, Mississippi State University, 1998.
[6] Babuška, I.; Rheinboldt, W. C., A posteriori error estimates for the finite element method, Int. J. Numer. Methods Engrg., 12, 1597-1615 (1978) · Zbl 0396.65068
[7] Ladevèze, P.; Coffignal, G.; Pelle, J. P., Accuracy of elastoplastic and dynamic analysis, (Babuška, I.; Zienkiewicz, O. C.; Gago, J.; Oliveira, E. R. de A., Accuracy Estimates and Adaptive Refinements in Finite Element Computations (1986), John Wiley & Sons Ltd.), 181-203, (Chapter 11)
[8] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part II: Error estimates and adaptivity, Int. J. Numer. Methods Engrg., 33, 1365-1382 (1992) · Zbl 0769.73085
[9] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Engrg., 24, 337-357 (1987) · Zbl 0602.73063
[10] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. J. Numer. Methods Engrg., 33, 1331-1364 (1992) · Zbl 0769.73084
[11] M. Dyduch, Adaptive method in finite element simulations of metal forming processes, Ph.D. thesis, Faculté des sciences appliquées, Université de Liège, 1996.; M. Dyduch, Adaptive method in finite element simulations of metal forming processes, Ph.D. thesis, Faculté des sciences appliquées, Université de Liège, 1996.
[12] Fourment, L.; Chenot, J.-L., Error estimators for viscoplastic materials: application to forming processes, Engrg. Comput., 12, 5, 469-490 (1995) · Zbl 0832.73067
[13] Liszka, T.; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comp. Struct., 11, 83-95 (1980) · Zbl 0427.73077
[14] Coupez, T.; Marie, S., From a direct solver to a parallel iterative solver in 3D forming simulation, Int. J. Supercomp. Appl., 11, 4, 205-211 (1997)
[15] Coupez, T., Génération de maillage et adaptation de maillage par optimisation locale, Rev. Eur. Élém. Finis, 9, 4, 403-423 (2000) · Zbl 0953.65089
[16] Gruau, C.; Coupez, T., 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech. Engrg., 194, 48-49, 4951-4976 (2005) · Zbl 1102.65122
[17] Zienkiewicz, O. C.; Lieu, Y. C.; Huang, G. C., Error estimates and convergence rates for various incompressible elements, Int. J. Numer. Methods Engrg., 28, 2191-2202 (1989) · Zbl 0717.73074
[18] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg., 101, 207-224 (1992) · Zbl 0779.73078
[19] Coorevits, P.; Bellenger, E., Alternative mesh optimality criteria for h-adaptive finite element method, Finite Elem. Anal. Des., 40, 1195-1215 (2004)
[20] Barlow, J., Optimal stresses locations in finite element models, Int. J. Numer. Methods Engrg., 10, 243-251 (1976) · Zbl 0322.73049
[21] Babuška, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, S. K., Computer-based proof of the existence of superconvergence points in the finite element method; Superconvergence of the derivatives in finite element solutions of Laplace’s, and the elasticity equations, Numer. Methods Partial Different. Equat., 12, 347-392 (1996) · Zbl 0854.65089
[22] Babuška, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, S. K.; Copps, K., Validation of a posteriori error estimators by numerical approach, Int. J. Numer. Methods Engrg., 37, 1073-1123 (1994) · Zbl 0811.65088
[23] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. J. Numer. Methods Engrg., 33, 1331-1364 (1992) · Zbl 0769.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.