×

Cayley graphs having nice enumerations. (English) Zbl 1118.03025

Finite covers appeared in model theory in attempts to classify strongly minimal structures (see [D. M. Evans, D. Macpherson and A. A. Ivanov, in: D. M. Evans (ed.), Model theory of groups and automorphism groups. Lectures held at the RESMOD summer school, Blaubeuren, Germany, July 31–August 5, 1995. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 244, 1–72 (1997; Zbl 0888.03020)] for a general theory of finite covers). Most of the known results concerned the \(\omega\)-categorical case. The author considers finite covers of the Cayley graphs of infinite finitely generated groups (such graphs are natural examples of strongly minimal non-\(\omega\)-categorical structures in a finite language), and is interested in the following questions. When is a finite cover finitely axiomatizable over the base? When does a finite cover have the finite model property?
G. Ahlbrandt and M. Ziegler [Ann. Pure Appl. Logic 30, No. 1, 63–82 (1986; Zbl 0592.03018)] introduced the notion of a nice enumeration as a tool in the study of finite covers of strictly minimal \(\omega\)-categorical structures. An enumeration \(w_0, w_1,\dots\) of a structure \(W\) is called nice if any set \(P\) of nice pairs has a finite subset \(P'\) such that for any \((w,S)\in P\) there are \((w',S')\in P'\) and \(\alpha\in \text{Aut}(W)\) with \(\alpha(w')=w\) and \(\alpha(S')\subseteq S\), where the nice pairs are defined to be the \(\text{Aut}(W)\)-conjugates of pairs of the form \((w_n,\{w_0,\dots,w_{n-1}\})\). Similarly, one can define nice enumerations for any permutation structure \((G,W)\).
Let \(W\) be the Cayley graph of an infinite finitely generated group \(G\), and \(M\) a finite cover of \(W\). The author proves that if \(W\) has a nice enumeration then \(\text{Th}(M)\) is finitely axiomatizable over \(\text{Th}(W)\). He shows that \(W\) has a nice enumeration in case of virtually abelian \(G\), and conjectures that if the Cayley graph of any subgroup of finite index in \(G\) has a “natural” nice enumeration then \(G\) is virtually abelian. The conjecture is verified for solvable \(G\). In case of virtually abelian \(G\), it is proven that \(\text{Th}(M)\) is not finitely axiomatizable, but it is open whether \(\text{Th}(M)\) has the finite model property; the latter is verified for \(G=\mathbb{Z}^2\). Also, it is shown that \(\text{Th}(M)\) has the finite model property if \(G\) is virtually nilpotent and the kernel of the cover is finite.
A number of results on non-existence of nice enumerations of non-disintegrated strongly minimal structures are proven: there is no nice enumeration of (1) a locally modular strongly minimal non-\(\omega\)-categorical group (with extra structure), (2) a countable saturated non-locally-modular strongly minimal structure, (3) the permutation structure \((\text{AGL}_n(D), D^n)\), for any infinite field \(D\).

MSC:

03C45 Classification theory, stability, and related concepts in model theory
03C60 Model-theoretic algebra
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20F65 Geometric group theory
Full Text: DOI

References:

[1] Abakumov, A. I.; Palyutin, E. A.; Shishmarev, Yu. E.; Taitslin, M. A., Categorical quasivarieties, Algebra and Logic, 11, 3-38 (1972) · Zbl 0249.02024 · doi:10.1007/BF02218582
[2] Ahlbrandt, G.; Ziegler, M., Quasi finitely axiomatizable totally categorical theories, Annals of Pure and Applied Logic, 30, 63-83 (1986) · Zbl 0592.03018 · doi:10.1016/0168-0072(86)90037-0
[3] Camina, A.; Evans, D., Some infinite permutation modules, The Quarterly Journal of Mathematics. Oxford, 42, 2, 15-26 (1991) · Zbl 0719.20002 · doi:10.1093/qmath/42.1.15
[4] Cherlin, G.; Hart, B.; Lachlan, A.; Valeriote, M., Large finite structures with few types, Algebraic Model Theory, 53-105 (1997), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0887.03029
[5] Cherlin, G.; Harrington, L.; Lachlan, A. H., ℵ_0-categorical, ℵ_0-stable structures, Annals of Pure and Applied Logic, 28, 103-135 (1985) · Zbl 0566.03022 · doi:10.1016/0168-0072(85)90023-5
[6] Evans, D.; Hrushovski, E., On the automorphism groups of finite covers, Annals of Pure and Applied Logic, 62, 83-112 (1993) · Zbl 0788.03043 · doi:10.1016/0168-0072(93)90168-D
[7] D. Evans, H. D. Macpherson and A. Ivanov,Finite covers, inModel Theory of Groups and Automorphism Groups (D. Evans, ed.), London Mathematical Society Lecture Note Series244, Cambridge University Press, 1997, pp. 1-72. · Zbl 0888.03020
[8] Hall, P., Finiteness conditions for soluble groups, Proceedings of the London Mathematical Society, 4, 419-436 (1954) · Zbl 0056.25603 · doi:10.1112/plms/s3-4.1.419
[9] Hall, P., Finite-by-nilpotent groups, Proceedings of the Cambridge Philosophical Society, 52, 611-616 (1956) · Zbl 0072.25801 · doi:10.1017/S0305004100031662
[10] Hall, P., On the finiteness of certain soluble groups, Proceedings of the London Mathematical Society, 9, 595-622 (1959) · Zbl 0091.02501 · doi:10.1112/plms/s3-9.4.595
[11] Herre, H., Modelltheoretische Eigenschaften endlichvalenteer Graphen, Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 26, 51-58 (1980) · Zbl 0445.03015 · doi:10.1002/malq.19800260106
[12] Higman, G., Ordering by divisibility in abstract algebras, Proceedings of the London Mathematical Society, 2, 3, 326-336 (1952) · Zbl 0047.03402 · doi:10.1112/plms/s3-2.1.326
[13] Higman, G., Finitely presented infinite simple groups (1974), Canberra: Australian National University, Canberra · Zbl 1479.20003
[14] Hrushovski, E., Totally categorical structures, Transactions of the American Mathematical Society, 313, 131-159 (1989) · Zbl 0674.03009 · doi:10.2307/2001069
[15] Hrushovski, E., Finitely axiomatizable ℵ_1-categorical theories, Journal of Symbolic Logic, 59, 838-844 (1994) · Zbl 0808.03015 · doi:10.2307/2275911
[16] Ivanov, A., The problem of finite axiomatizability for strongly minimal theories of graphs and groups with more than one ends, Algebra and Logic, 28, 108-116 (1989) · Zbl 0718.03028 · doi:10.1007/BF01979374
[17] Ivanov, A., The problem of finite axiomatizability for strongly minimal theories of graphs, Algebra and Logic, 28, 183-194 (1989) · Zbl 0727.05028 · doi:10.1007/BF01978722
[18] Ivanov, A.; Weese, M.; Wolter, H., Strongly minimal structures with disintegrated algebraic closure and structures of bounded valency, Proceedings of the Tenth Easter Conference on Model Theory, 64-69 (1993), Berlin: Springer, Berlin · Zbl 0797.03033
[19] Jacobson, N., Structure of Rings (1956), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0073.02002
[20] Kargapolov, M. I.; Merzlyakov, Ju. I., The Basic Group Theory (1977), Moscow: Nauka, Moscow · Zbl 0499.20001
[21] K. Meyrembekov,Superstable theories of minimal Shelah rank, inInvestigations in Constructive Models (in Russian), Alma-Ata, 1982, pp. 27-45.
[22] Olshanski, A. Yu., Geometry of Defining Relations in Groups (1989), Moscow: Nauka, Moscow · Zbl 0676.20014
[23] A. Pillay,Geometric Stability Theory, Oxford University Press, 1996. · Zbl 0871.03023
[24] Raghunathan, M. S., Discrete Subgroups of Lie Groups (1972), New York: Springer-Verlag, New York · Zbl 0254.22005
[25] Ribenboim, P., The Theory of Classical Valuations (1999), New York: Springer-Verlag, New York · Zbl 0957.12005
[26] Roseblade, J. E., Group rings of polycyclic groups, Journal of Pure and Applied Algebra, 3, 307-328 (1973) · Zbl 0285.20008 · doi:10.1016/0022-4049(73)90034-0
[27] Tits, J., Groupes a croissance polynomiale (d’apres M. Gromov et al.), Seminaire Bourbaki, 572, 1-13 (1980)
[28] Wolf, J. H., Growth of finitely generated solvable groups and curvature of Riemannian manifolds, Journal of Differential Geometry, 2, 421-446 (1968) · Zbl 0207.51803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.