×

The universal cover of an affine three-manifold with holonomy of shrinkable dimension \(\leq\) two. (English) Zbl 1110.57301

Summary: An affine manifold is a manifold with an affine structure, i.e. a torsion-free flat affine connection. We show that the universal cover of a closed affine 3-manifold \(M\) with holonomy group of shrinkable dimension (or discompacity in French) less than or equal to two is diffeomorphic to \(\mathbb R^3\). Hence, \(M\) is irreducible. This follows from two results: (i) a simply connected affine 3-manifold which is 2-convex is diffeomorphic to \(\mathbb R^3\), the proof of which using Morse theory takes most of this paper; and (ii) a closed affine manifold of holonomy of shrinkable dimension less or equal to \(d\) is \(d\)-convex. To prove (i), we show that 2-convexity is a geometric form of topological incompressibility of level sets. As a consequence, we show that the universal cover of a closed affine three-manifold with parallel volume form is diffeomorphic to \(\mathbb R^3\), a part of the weak Markus conjecture. As applications, we show that the universal cover of a hyperbolic 3-manifold with cone-type singularity of arbitrarily assigned cone-angles along a link removed with the singular locus is diffeomorphic to \(\mathbb R^3\). A fake cell has an affine structure as shown by Gromov. Such a cell must have a concave point at the boundary.

MSC:

57M50 General geometric structures on low-dimensional manifolds
53C29 Issues of holonomy in differential geometry
57N10 Topology of general \(3\)-manifolds (MSC2010)

References:

[1] DOI: 10.1007/BF02564497 · Zbl 0839.53033 · doi:10.1007/BF02564497
[2] Benzécri J. P., Bull. Soc. Math. France 88 pp 229– (1960)
[3] DOI: 10.1007/BF01393894 · Zbl 0682.53051 · doi:10.1007/BF01393894
[4] Carrière Y., Montpellier pp 69– (1993)
[5] DOI: 10.1142/S0129167X93000108 · Zbl 0787.53025 · doi:10.1142/S0129167X93000108
[6] Choi S., J. Differential Geom. 40 pp 165– (1994)
[7] Choi S., J. Differential Geom. 40 pp 239– (1994)
[8] Choi S., Proc. Amer. Math. Soc. 122 pp 545– (1994)
[9] Choi S., J. Korean Math. Soc. 33 pp 1139– (1996)
[10] Choi S., Mem. Soc. Math. France 78 pp 1– (1999) · Zbl 0965.57016 · doi:10.24033/msmf.391
[11] DOI: 10.1090/S0273-0979-97-00711-8 · Zbl 0866.57001 · doi:10.1090/S0273-0979-97-00711-8
[12] Elworthy K., Amer. Math. Soc. pp 45– (1970)
[13] Flyod W., Topology App. 13 pp 261– (1982)
[14] Fried D., J. Differential Geom. 24 pp 265– (1986) · Zbl 0608.53026 · doi:10.4310/jdg/1214440550
[15] DOI: 10.1016/0001-8708(83)90053-1 · Zbl 0571.57030 · doi:10.1016/0001-8708(83)90053-1
[16] DOI: 10.1007/BF02566225 · Zbl 0516.57014 · doi:10.1007/BF02566225
[17] DOI: 10.1090/S0002-9947-1984-0760977-7 · doi:10.1090/S0002-9947-1984-0760977-7
[18] Goldman W., J. Differential Geom. 25 pp 297– (1987) · Zbl 0595.57012 · doi:10.4310/jdg/1214440978
[19] Goldman W., J. Differential Geom. 31 pp 791– (1990) · Zbl 0711.53033 · doi:10.4310/jdg/1214444635
[20] DOI: 10.1070/IM1969v003n04ABEH000796 · Zbl 0205.53502 · doi:10.1070/IM1969v003n04ABEH000796
[21] DOI: 10.1007/BF01388971 · Zbl 0602.57002 · doi:10.1007/BF01388971
[22] Kamishima Y., Kinokuniya pp 263– (1992)
[23] Kojima S., J. Differential Geometry 49 pp 469– (1998) · Zbl 0990.57004 · doi:10.4310/jdg/1214461108
[24] DOI: 10.2307/1969480 · Zbl 0039.17701 · doi:10.2307/1969480
[25] DOI: 10.1007/BF02564579 · Zbl 0196.25101 · doi:10.1007/BF02564579
[26] Nagano T., Osaka J. Math. 11 pp 178– (1977)
[27] DOI: 10.2307/1971256 · Zbl 0382.57010 · doi:10.2307/1971256
[28] DOI: 10.1007/BF01389273 · Zbl 0485.57015 · doi:10.1007/BF01389273
[29] DOI: 10.2307/2373250 · Zbl 0143.35301 · doi:10.2307/2373250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.