×

Incompressible surfaces in 2-bridge knot complements. (English) Zbl 0602.57002

This paper gives the isotopy classification of incompressible and \(\partial\)-incompressible surfaces (orientable or not) in the complement of a 2-bridge knot \(K_{p/q}\). The only closed incompressible surfaces are boundary parallel tori. For each continued fraction expansion \(p/q=r+[b_ 1,...,b_ k]\) there is a branched surface \(\Sigma (b_ 1,...,b_ k)\) in \(S^ 3\) which contains all the surfaces obtained by plumbing together k bands in a row, the ith band having \(b_ i\) half- twists. (These surfaces all have boundary \(K_{p/q}.)\) All the incompressible \(\partial\)-incompressible surfaces are obtained by plumbing ”multiple bands”.
The questions of which of these are connected and which are orientable are discussed, but not dealt with completely. The slopes of their boundary curves are given. The orientable incompressible Seifert surfaces for K all have the same genus, and are all isotopic if and only if in the unique continued fraction expansion of p/q with all \(b_ i's\) even at most one is not \(\pm 2.\)
Except when \(K_{p/q}\) is a torus knot, Dehn surgery always gives an irreducible 3-manifold, and almost all such are hyperbolic but not Haken.
Reviewer: J.Hillman

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57N10 Topology of general \(3\)-manifolds (MSC2010)

References:

[1] Bass, H.: Finitely generated subgroups ofGL 2. In: The Smith Conjecture (J.W. Morgan, H. Bass, eds.), pp. 127-136. Orlando: Academic Press 1984
[2] Conway, J.H.: An enumeration of knots and links, and some of their algebraic properties. Computational problems in abstract algebra, pp. 329-358. New York and Oxford: Pergamon 1970
[3] Culler, M., Jaco, W., Rubinstein, J.: Incompressible surfaces in once-punctured torus bundles. Proc. L.M.S.45, 385-419 (1982) · Zbl 0515.57002 · doi:10.1112/plms/s3-45.3.385
[4] Culler, M., Shalen, P.: Bounded, separating, incompressible surfaces in knot manifolds. Invent. Math.75, 537-545 (1984) · Zbl 0542.57011 · doi:10.1007/BF01388642
[5] Floyd, W., Hatcher, A.: Incompressible surfaces in punctured-torus bundles. Topology and its Appl.13, 263-282 (1982) · Zbl 0493.57004 · doi:10.1016/0166-8641(82)90035-9
[6] Floyd, W., Hatcher, A.: The space of incompressible surfaces in a 2-bridge link complement. (In press) (1983) · Zbl 0672.57006
[7] Floyd, W., Oertel, U.: Incompressible surfaces via branched surfaces Topology23, 117-125 (1984) · Zbl 0524.57008 · doi:10.1016/0040-9383(84)90031-4
[8] Hatcher, A.: On the boundary curves of incompressible surfaces. Pac. J. Math.99, 373-377 (1982) · Zbl 0502.57005
[9] Menasco, W.: Closed incompressible surfaces in alternating knot and link complements. Topology23, 37-44 (1984) · Zbl 0525.57003 · doi:10.1016/0040-9383(84)90023-5
[10] Moser, L.: Elementary surgery along a torus knot. Pac. J. Math.38, 737-745 (1971) · Zbl 0202.54701
[11] Oertel, U.: Closed incompressible surfaces in complements of star links. Pac. J. Math.111, 209-230 (1984) · Zbl 0549.57004
[12] Oertel, U.: Incompressible branched surfaces. Invent. Math.76, 385-410 (1984) · Zbl 0539.57006 · doi:10.1007/BF01388466
[13] Przytycki, J.: Incompressibility of surfaces after Dehn surgery. (In press) (1983) · Zbl 0549.57007
[14] Reidemeister, K.: Homotopieringe und Linseräume. Abh. Math. Sem. Hamburg11, 102-109 (1936) · Zbl 0011.32404 · doi:10.1007/BF02940717
[15] Riley, R.: Parabolic representations of knot groups I. Proc. L.M.S.24, 217-242 (1972). · Zbl 0229.55002 · doi:10.1112/plms/s3-24.2.217
[16] Schubert, H.: Knoten mit zwei Brücken. Math. Zeitschr.65, 133-170 (1956) · Zbl 0071.39002 · doi:10.1007/BF01473875
[17] Siebenmann, L.: Exercices sur les noeuds rationnels, xeroxed notes from Orsay, 1975
[18] Thurston, W.: Geometry and Topology of 3-Manifolds, xeroxed notes from Princeton University, 1978 · Zbl 0399.73039
[19] Thurston, W.: Three dimensional manifolds, Kleinian groups, and hyperbolic geometry. Bull. A.M.S.6, 357-381 (1982) · Zbl 0496.57005 · doi:10.1090/S0273-0979-1982-15003-0
[20] Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I. Invent. Math.3, 308-333 (1967) · Zbl 0168.44503 · doi:10.1007/BF01402956
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.