×

The density of rational lines on cubic hypersurfaces. (English) Zbl 1108.11302

This paper considers lines \(L\) lying in a given diagonal cubic hypersurface defined over the rationals. Since any such hypersurface with \(s\geq 7\) has a rational point, by the work of R. C. Baker [Acta Arith. 53, No. 3, 217–250 (1989; Zbl 0642.10041)], it is easy to see that there will be a rational line as long as \(s\geq 14\). The present paper is concerned with estimating how frequent such lines are. Let \(N_s(P)\) denote the number of lines \(L\) lying in the variety, and taking the form \(t{\mathbf a}+{\mathbf b}\) with integer vectors \({\mathbf a}\), \({\mathbf b}\) satisfying \(\max(|{\mathbf a}|_\infty, |{\mathbf b}|_\infty)\leq P\). Lines which have more that one admissible representation (a possibility the author appears to have overlooked) are counted with appropriate multiplicity. The result of the paper is then that \(N_s(P)\gg P^{2s-12}\) if \(s\geq 57\). Here \(P^{2s-12}\) is the conjectural order of magnitude for \(N_s(P)\).
The proof applies the circle method to estimate the number of simultaneous solutions of the equations \[ \sum^s_{i=1} c_i x^3_i= \sum^s_{i=1} c_i x^2_i y_i= \sum^s_{i=1} c_i x_i y^2_i= \sum^s_{i=1} c_i y^3_i= 0. \] This uses various mean value estimates, the starting point for which is a paucity result for the simultaneous equations \[ \sum^3_{i=} x^3_i= \sum^6_{i=4} x^3_i,\quad \sum^3_{i=} x^2_i y_i= \sum^6_{i=4} x^2_i y_i,\quad\sum^3_{i=} x_i y^2_i= \sum^6_{i=4} x_i y^2_i,\quad \sum^3_{i=} y^3_i= \sum^6_{i=4} y^3_i. \]

MSC:

11D25 Cubic and quartic Diophantine equations
11D45 Counting solutions of Diophantine equations
11L07 Estimates on exponential sums
11P55 Applications of the Hardy-Littlewood method

Citations:

Zbl 0642.10041
Full Text: DOI

References:

[1] G. I. Arhipov, A. A. Karacuba, and V. N. Čubarikov, Multiple trigonometric sums, Trudy Mat. Inst. Steklov. 151 (1980), 128 (Russian).
[2] R. C. Baker, Diagonal cubic equations. II, Acta Arith. 53 (1989), no. 3, 217 – 250. R. C. Baker, Diagonal cubic equations. III, Proc. London Math. Soc. (3) 58 (1989), no. 3, 495 – 518. · Zbl 0642.10042 · doi:10.1112/plms/s3-58.3.495
[3] B. J. Birch, Homogeneous forms of odd degree in a large number of variables, Mathematika 4 (1957), 102 – 105. · Zbl 0081.04501 · doi:10.1112/S0025579300001145
[4] R. Brauer, A note on systems of homogeneous algebraic equations, Bull. Amer. Math. Soc. 51 (1945), 749-755. · Zbl 0063.00599
[5] T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105 (1931), 653-662. · JFM 57.0222.02
[6] D. R. Heath-Brown, The density of rational points on cubic surfaces, Acta Arith. 79 (1997), no. 1, 17 – 30. · Zbl 0863.11021
[7] C. Hooley, On the representations of a number as the sum of four cubes. I, Proc. London Math. Soc. (3) 36 (1978), no. 1, 117 – 140. , https://doi.org/10.1112/plms/s3-36.1.117 C. Hooley, On the representations of a number as the sum of four cubes. II, J. London Math. Soc. (2) 16 (1977), no. 3, 424 – 428. · Zbl 0381.10034 · doi:10.1112/jlms/s2-16.3.424
[8] Christopher Hooley, On the numbers that are representable as the sum of two cubes, J. Reine Angew. Math. 314 (1980), 146 – 173. · Zbl 0423.10026 · doi:10.1515/crll.1980.314.146
[9] M. Jurchescu, On analytic maps of analytic spaces, Rev. Roumaine Math. Pures Appl. 9 (1964), 253 – 264. · Zbl 0128.30402
[10] S. T. Parsell, Multiple exponential sums over smooth numbers J. Reine Angew. Math (to appear). · Zbl 1021.11024
[11] Wolfgang M. Schmidt, On cubic polynomials. III. Systems of \?-adic equations, Monatsh. Math. 93 (1982), no. 3, 211 – 223. · Zbl 0473.10017 · doi:10.1007/BF01299298
[12] Wolfgang M. Schmidt, On cubic polynomials. IV. Systems of rational equations, Monatsh. Math. 93 (1982), no. 4, 329 – 348. · Zbl 0481.10015 · doi:10.1007/BF01295233
[13] R. C. Vaughan, A new iterative method in Waring’s problem, Acta Math. 162 (1989), no. 1-2, 1 – 71. · Zbl 0665.10033 · doi:10.1007/BF02392834
[14] R. C. Vaughan, The Hardy-Littlewood method, 2nd ed., Cambridge Tracts in Mathematics, vol. 125, Cambridge University Press, Cambridge, 1997. · Zbl 0868.11046
[15] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, Acta Math. 174 (1995), 147-240. · Zbl 0849.11075
[16] Trevor D. Wooley, On simultaneous additive equations. I, Proc. London Math. Soc. (3) 63 (1991), no. 1, 1 – 34. , https://doi.org/10.1112/plms/s3-63.1.1 Trevor D. Wooley, On simultaneous additive equations. II, J. Reine Angew. Math. 419 (1991), 141 – 198. , https://doi.org/10.1515/crll.1991.419.141 Trevor D. Wooley, On simultaneous additive equations. III, Mathematika 37 (1990), no. 1, 85 – 96. · Zbl 0691.10008 · doi:10.1112/S0025579300012821
[17] Trevor D. Wooley, Breaking classical convexity in Waring’s problem: sums of cubes and quasi-diagonal behaviour, Invent. Math. 122 (1995), no. 3, 421 – 451. · Zbl 0851.11055 · doi:10.1007/BF01231451
[18] Trevor D. Wooley, Sums of two cubes, Internat. Math. Res. Notices 4 (1995), 181 – 184. · Zbl 0821.11049 · doi:10.1155/S1073792895000146
[19] Trevor D. Wooley, Linear spaces on cubic hypersurfaces, and pairs of homogeneous cubic equations, Bull. London Math. Soc. 29 (1997), no. 5, 556 – 562. · Zbl 0910.11013 · doi:10.1112/S0024609397003184
[20] -, Sums of three cubes, Mathematika (to appear). · Zbl 1026.11075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.