×

Sums of three cubes. (English) Zbl 1026.11075

Let \(R(N)\) denote the number of positive integers not exceeding \(N\) which are a sum of three positive integer cubes. It is believed that the integers in question have positive density, but the recorded results are of the form \(R(N) \gg N^{\alpha-\varepsilon}\) for certain \(\alpha < 1\). Using an extension of the “new iterative method” of R. C. Vaughan [Acta Math. 162, 1-71 (1989; Zbl 0665.10033)] the author [Invent.Math. 122, 421-451 (1995; Zbl 0851.11055)], using estimates for fractional moments of exponential sums over smooth numbers, improved Vaughan’s result with \(\alpha={11\over 12}\) to \(\alpha=1-\xi/3\), where \(\xi\) is the positive root of \(\xi^3+16\xi^2+28\xi-8\). The paper under review establishes an improved Mean Value Theorem, which leads to the quadratic irrational value \(\alpha = \bigl(166-\sqrt{2833} \bigr)/123= 0.91686\ldots \). The numerical improvement is very small, occurring in the fifth decimal place.
The conditional value \(\alpha=1\) was obtained by C. Hooley [Acta Math. 157, 49-97 (1986; Zbl 0614.10038); and in Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), Cambridge University Press, Lond. Math. Soc. Lect. Note Ser. 237, 175-185 (1997; Zbl 0930.11071)] and by D. R. Heath-Brown [Philos.Trans.R. Soc.Lond., Ser. A 356, No. 1738, 673-699 (1998; Zbl 0899.11051)], but this rests upon a Riemann Hypothesis for certain Hasse-Weil \(L\)-functions that are not known to possess an analytic continuation into the critical strip.
Following an argument of J. Brüdern, the new method slightly improves the estimate for the number \(E(X)\) of positive integers not exceeding \(X\) which are not a sum of four positive cubes, to \(E(X) \ll X^{1-\beta+\varepsilon}\), where \(\beta=\bigl(422-6\sqrt{2833} \bigr)/861 =0.11921\ldots \).
The author’s new mean value theorem refers to \(f(t,P,R) = \smash{\sum_{x \in {\mathcal A}(P,R)}}e\bigl(t x^3\bigr)\), in which \({\mathcal A}(P,R)\) is the set of numbers \(\leq P\) all of whose prime factors are \(\leq R\), and to the moments \(U_s(P,R) = \int_{0<t<1}\bigl|f(t,P,R)\smash{\bigr|^s} dt\) when \(s=5\), but the method implies improvements for some other values of \(s\). The method is based on new iterations between admissible exponents \(\mu_s\) in inequalities of the shape \(U_s(P,R) \ll P^{\mu_s+\varepsilon}\).

MSC:

11P05 Waring’s problem and variants
11P55 Applications of the Hardy-Littlewood method
Full Text: DOI

References:

[1] DOI: 10.1007/BF02547752 · Zbl 0021.10601 · doi:10.1007/BF02547752
[2] DOI: 10.1112/jlms/s1-25.4.339 · Zbl 0038.18401 · doi:10.1112/jlms/s1-25.4.339
[3] DOI: 10.1017/S0305004100069711 · Zbl 0729.11046 · doi:10.1017/S0305004100069711
[4] DOI: 10.1017/S0305004100064586 · Zbl 0655.10041 · doi:10.1017/S0305004100064586
[5] DOI: 10.1007/BF01231451 · Zbl 0851.11055 · doi:10.1007/BF01231451
[6] Vaughan, The Hardy-Littlewood Method, 2nd edition (1997) · Zbl 0868.11046 · doi:10.1017/CBO9780511470929
[7] DOI: 10.1007/BF02392834 · Zbl 0665.10033 · doi:10.1007/BF02392834
[8] Vaughan, J. reine angew. Math. 365 pp 122– (1986)
[9] DOI: 10.1112/blms/17.1.17 · Zbl 0562.10022 · doi:10.1112/blms/17.1.17
[10] Hooley, Sieve methods, exponential sums and their applications in number theory pp 175– (1995)
[11] DOI: 10.1112/jlms/s2-33.3.407 · Zbl 0602.10038 · doi:10.1112/jlms/s2-33.3.407
[12] DOI: 10.1007/BF02392591 · Zbl 0614.10038 · doi:10.1007/BF02392591
[13] Hooley, J. reine angew. Math. 369 pp 110– (1986)
[14] DOI: 10.1098/rsta.1998.0181 · Zbl 0899.11051 · doi:10.1098/rsta.1998.0181
[15] DOI: 10.1112/S0024611500012624 · Zbl 1016.11044 · doi:10.1112/S0024611500012624
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.