×

Radiation models for thermal flows at low Mach number. (English) Zbl 1099.76056

Summary: Simplified approximate models for radiation are proposed to study thermal effects in low Mach flow in open tunnels. The governing equations for fluid dynamics are derived by applying a low Mach asymptotic in the compressible Navier-Stokes problem. Based on an asymptotic analysis, we show that the integro-differential equation for radiative transfer can be replaced by a set of differential equations which are independent of angle variable and are easy to solve using standard numerical discretizations. As an application, we consider a simplified fire model in vehicular tunnels. The results presented in this paper show that the proposed models are able to predict temperature in the tunnels accurately with low computational cost.

MSC:

76N15 Gas dynamics (general theory)
76M20 Finite difference methods applied to problems in fluid mechanics
78A40 Waves and radiation in optics and electromagnetic theory
76V05 Reaction effects in flows
80A25 Combustion

Software:

GENSMAC
Full Text: DOI

References:

[1] Backofen, R.; Bilz, T.; Ribalta, A.; Voigt, A., \(SP_N\)-approximations of internal radiation in crystal growth of optical materials, J. Crystal Growth., 266, 264-270 (2004)
[2] Fiveland, W., The selection of discrete ordinate quadrature sets for anisotropic scattering, ASME HTD. Fundam. Radiat. Heat Transf., 160, 89-96 (1991)
[3] Frank, M.; Seaïd, M.; Janicka, J.; Klar, A.; Pinnau, R.; Thömmes, G., A comparison of approximate models for radiation in gas turbines, Int. J. Progress CFD, 3, 191-197 (2004)
[4] E.M. Gelbard, Simplified spherical harmonics equations and their use in shielding problems. Technical Report WAPD-T-1182, Bettis Atomic Power Laboratory, 1961.; E.M. Gelbard, Simplified spherical harmonics equations and their use in shielding problems. Technical Report WAPD-T-1182, Bettis Atomic Power Laboratory, 1961.
[5] Gasser, I.; Struckmeier, J.; Teleaga, I., Modelling and simulation of fires in vehicle tunnels, Int. J. Numer. Methods Fluids., 44, 277-296 (2004) · Zbl 1035.76034
[6] Gasser, I.; Struckmeier, J., An asymptotic induced one-dimensional model to describe fires in tunnels, Math. Model. Appl. Sci., 25, 1231-1249 (2002) · Zbl 1099.80007
[7] Harlow, F.; Welch, J., Numerical calculation of three dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[8] Klar, A.; Lang, J.; Seaïd, M., Adaptive solutions of \(SP_N\)-approximations to radiative heat transfer in glass, Int. J. Therm. Sci., 44, 1013-1023 (2005)
[9] Larsen, E.; Thömmes, G.; Klar, A.; Seaïd, M.; Götz, T., Simplified \(P_N\) approximations to the equations of radiative heat transfer and applications, J. Comput. Phys., 183, 652-675 (2002) · Zbl 1016.65105
[10] Larsen, E.; Morel, J.; McGhee, J., Asymptotic derivation of the multigroup \(P_1\) and simplified \(P_N\) equations with anisotropic scattering, Nucl. Sci. Eng., 123, 328-367 (1996)
[11] Lauriat, G., Combined radiation-convection in gray fluids enclosed in vertical cavities, J. Heat Transf., 104, 609-615 (1982)
[12] Liu, F.; Becker, H.; Bindar, Y., A comparative study of radiative heat transfer modelling in gas-fired furnaces using the simple grey gas and the weighted-sum-of grey-gases models, Int. J. Heat Mass Transf., 41, 3357-3371 (1998) · Zbl 0940.76519
[13] Majda, M.; Sethian, J., The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Technol., 42, 185-205 (1985)
[14] Mihalas, D.; Mihalas, B. S., Foundations of Radiation Hydrodynamics (1983), Oxford University Press: Oxford University Press New York · Zbl 0651.76005
[15] Modest, M. F., Radiative Heat Transfer (1993), McGraw-Hill: McGraw-Hill New York
[16] Schneider, T.; Botta, N.; Geratz, K. J.; Klein, R., Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows, J. Comput. Phys., 155, 248-286 (1999) · Zbl 0968.76054
[17] Seaïd, M.; Klar, A.; Pinnau, R., Numerical solvers for radiation and conduction in high temperature gas flows, J. Flow Turbul. Combust., 75, 173-190 (2005) · Zbl 1331.80018
[18] Seaïd, M.; Frank, M.; Klar, A.; Pinnau, R.; Thömmes, G., Efficient numerical methods for radiation in gas turbines, J. Comput. Appl. Math., 170, 217-239 (2004) · Zbl 1221.80023
[19] Selçuk, N.; Kayakol, N., Evaluation of discrete ordinates method for radiative transfer in rectangular furnaces, Int. J. Heat Mass Transf., 40, 213-222 (1997) · Zbl 0925.76410
[20] Thömmes, G.; Pinnau, R.; Seaïd, M.; Götz, T.; Klar, A., Numerical methods and optimal control for glass cooling processes, Transp. Theory Stat. Phys., 31, 513-529 (2002) · Zbl 1011.80003
[21] Tom, M.; McKee Gensmac, S., A computational marker and cell method for free surface flows in general domains, J. Comput. Phys., 110, 171-186 (1994) · Zbl 0790.76058
[22] Turkel, E.; Radespiel, R.; Kroll, N., Assessment of preconditioning methods for multidimensional aerodynamics, Comput. Fluids, 26, 613-634 (1997) · Zbl 0893.76063
[23] van der Vorst, H. A., BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsysmmetric linear systems, SIAM J. Sci. Statist. Comput., 13, 631-644 (1992) · Zbl 0761.65023
[24] J. Welch, F.H. Harlow, J.P. Shannon, B.J. Daly, The MAC Method a Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces, Los Alamos Scientific Laboratory California, LA-3425, 1966.; J. Welch, F.H. Harlow, J.P. Shannon, B.J. Daly, The MAC Method a Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces, Los Alamos Scientific Laboratory California, LA-3425, 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.