×

Relative Milnor \(K\)-theory. (English) Zbl 0780.19005

When \(F\) is a field the Milnor \(K\)-groups, \(K^ M_ n(F)\), are defined as the graded algebra on \(F^*\) divided by the two-sided ideal generated by elements \(a\otimes (1-a)\). There is a natural map between Milnor and Quillen \(K\)-theory, \(s_ p: K^ M_ p(F)\to K_ p(F)\). It is shown by A. A. Suslin [Lect. Notes Math. 1046, 357-375 (1984; Zbl 0528.18007)] that, if \(F\) is infinite, \((p-1)\)! annihilates the kernel of \(s_ p\). In addition the Kato conjecture predicts that the norm residue symbol, \[ \ominus_{p,n}: K^ M_ p(F)/n\to H^ p\bigl(F; \mu^{\otimes p}_ n\bigr) \] is an isomorphism if \({1\over n}\in F\). Finally, if \(\text{gr}^*_ \gamma K_ *(F; \mathbb{Z}/\ell^ k)\) is the associated grade of the \(\gamma\)-filtration on \(\text{mod }\ell^ k\), the Quillen-Lichtenbaum conjecture predicts that the Chern class induces an isomorphism \[ c_{q,p}: \text{gr}^ q_ \gamma K_{2q-p}(F: \mathbb{Z}/\ell^ k)\to H^ p\bigl(F; \mu^{\otimes a}_{\ell^ k}\bigr) \] if \(\ell\geq 2q-p\), \(p\leq q\).
The author defines relative Milnor \(K\)-theory, \(K^ M_ *(R; I_ 1,\dots,I_ s)\) for a semi-local ring with ideals, \(I_ j\vartriangleleft R\). He shows that this generalization has the same formal properties as \(K^ M_ *(F)\) and formulates a generalized Kato conjecture. Finally he shows that the generalized Kato conjecture implies the Quillen-Lichtenbaum conjecture.

MSC:

19D45 Higher symbols, Milnor \(K\)-theory
19E20 Relations of \(K\)-theory with cohomology theories
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry

Citations:

Zbl 0528.18007
Full Text: DOI

References:

[1] Bloch, S. and Ogus, A.: Gersten’s conjecture and the homology of schemes,Ann. Sci. Ecole Norm. Sup. 7 (1974), 181–201. · Zbl 0307.14008
[2] Bousfield, A. K. and Friedlander, E. M.: Homotopy of {\(\Gamma\)}-spaces, spectra and bisimplicial sets,Lecture Notes in Math. 658 (1979) 116–130. · Zbl 0405.55021
[3] Dold, A. and Puppe, D.: Homologie nicht-additiver funktoren. Anwendungen,Ann. Inst. Fourier 11 (1961), 201–313. · Zbl 0098.36005
[4] Ellis, G.: Multi-relative K-theory: The groupK 2({\(\Lambda\)};I 1, ...,I n ) and related computations,J. Algebra 112 (1988), 271–289. · Zbl 0632.18006 · doi:10.1016/0021-8693(88)90090-7
[5] Gillet, H.: Riemann-Roch theorems for higher algebraicK-theory,Adv. Math. 40 (1981), 203–289. · Zbl 0478.14010 · doi:10.1016/S0001-8708(81)80006-0
[6] Guin, D. MilnorK-theory and the homology of GL n , Thése d’état, 1987.
[7] Hiller, H.: {\(\lambda\)}-rings and algebraicK-theory,J. Pure Appl. Algebra 20 (1981), 241–266. · Zbl 0471.18007 · doi:10.1016/0022-4049(81)90062-1
[8] Kato, K.: A generalization of local class field theory by usingK-groups, II,J. Fac. Sci. Tokyo Univ. IA Math. 27(3) (1980), 602–683. · Zbl 0463.12006
[9] Kratzer, C.: {\(\lambda\)}-structure enK-théorie algébrique,Comment. Math. Helv. 55(2) (1980), 23–354. · Zbl 0444.18008 · doi:10.1007/BF02566684
[10] Karoubi, M. and Villamayor, O.:K-théorie algébrique etK-théorie topologique,Math. Scand. 28 (1971), 265–307. · Zbl 0231.18018
[11] Levine, M.: The indecomposableK 3 of fields,Ann. Sci. Ecole Norm. Sup. (4) 22 (1989), 255–344. · Zbl 0705.19001
[12] Levine, M.: The weight twoK-theory of fields, preprint (1988) revised (1991).
[13] Lichtenbaum, S.: Values of zeta functions, étale cohomology and algebraicK-theory,Lecture Notes in Math. 342 (1973), 489–501. · Zbl 0284.12005
[14] Loday, J. L.:K-théories algébrique et représentations de groupes,Ann. Sci. Ecole Norm. Sup. (4),9 (1976), 309–377. · Zbl 0362.18014
[15] Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés,Ann. Sci. Ecole Norm Sup. (4) 2 (1969) 1–62. · Zbl 0261.20025
[16] Merkurjev, A. S.: On the norm residue symbol of degree 2,Dokl. Akad. Nauk. SSSR 261(3) (1981), 542–547.
[17] Merkurjev, A. S. and Suslin, A. A.:K-cohomology of Severi-Brauer varieties and norm residue homomorphism,Math. USSR-Izy. 21 (1983), 307–340. · Zbl 0525.18008 · doi:10.1070/IM1983v021n02ABEH001793
[18] Merkurjev, A. S. and Suslin, A. A.: The norm residue homomorphism of degree three,Math. USSR-Izv. 36(2) (1991), 349–367. · Zbl 0716.19002 · doi:10.1070/IM1991v036n02ABEH002025
[19] Merkurjev, A. S. and Suslin, A. A.: On theK 3 of a field,Math. USSR-Izv. 36(3) (1991), 541–565. · Zbl 0725.19003 · doi:10.1070/IM1991v036n03ABEH002034
[20] Milnor, J.: AlgebraicK-theory and quadratic forms,Invent. Math. 4 (1970), 318–344. · Zbl 0199.55501 · doi:10.1007/BF01425486
[21] Rost, M.: Hilbert theorem 90 forK 3 for degree two extensions, preprint (1986).
[22] Soulé, C.: Opérations enK-théorie algébrique,Canad. J. Math. 37(3) (1985), 488–550. · Zbl 0575.14015 · doi:10.4153/CJM-1985-029-x
[23] Soulé, C.:K-théorie des anneaux d’entiers de corp de nombres et cohomologie étale,Invent. Math. 55 (1979), 251–295. · Zbl 0437.12008 · doi:10.1007/BF01406843
[24] Suslin, A. A.: Homology of GL n , characteristic classes and MilnorK-theory,Lecture Notes in Math. 1046 (1985), 357–375. · doi:10.1007/BFb0072031
[25] Suslin, A. A.: On the equivalence ofK-theories,Comm. Algebra 9(15) (1981), 1559–1566. · Zbl 0469.18010 · doi:10.1080/00927878108822666
[26] Suslin, A. A.: Stability in algebraicK-theory,Lecture Notes in Math. 966 (1982), 304–333. · doi:10.1007/BFb0062181
[27] Tate, J.: Relations betweenK 2 and Galois cohomology,Invent. Math. 36 (1976), 257–274. · Zbl 0359.12011 · doi:10.1007/BF01390012
[28] Volodin, AlgebraicK-theory as an extraordinary homology theory on the category of associative rings with unit,Math USSR-Izv. 5 (1971), 859–887. · Zbl 0252.18010 · doi:10.1070/IM1971v005n04ABEH001121
[29] Vorst, T.: A survey on theK-theory of polynomial extensions,Lecture Notes in Math. 1046 (1982), 422–441. · doi:10.1007/BFb0072034
[30] Vorst, T.: Localization of theK-theory of polynomial equations,Math. Ann. 244 (1979), 33–53. · Zbl 0415.13005 · doi:10.1007/BF01420335
[31] Waldhausen, F.: AlgebraicK-theory of generalized free products,Ann. Math. 108 (1978), 135–256. · Zbl 0397.18012 · doi:10.2307/1971165
[32] Weibel, C.: A survey of products in algebraicK-theory,Lecture Notes in Math. 854 (1981), 494–517. · doi:10.1007/BFb0089535
[33] Weibel, C.: Mayer-Vietoris sequences and module structure ofNK*,Lecture Notes in Math. 854 (1981), 466–493. · doi:10.1007/BFb0089534
[34] Weibel, C.:KV theory of categories,Trans. Amer. Math. Soc. 267 (1981), 621–635. · Zbl 0474.18009 · doi:10.1090/S0002-9947-1981-0626494-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.