×

A large deviation principle for the equilibrium states of Hölder potentials: the zero temperature case. (English) Zbl 1088.60091

Summary: Consider an \(\alpha\)-Hölder function \(A:\Sigma\to\mathbb R\) and assume that it admits a unique maximizing measure \(\mu_{\max}\). For each \(\beta\), we denote \(\mu_\beta\), the unique equilibrium measure associated to \(\beta A\). We show that \((\mu_\beta)\) satisfies a large deviation principle, that is, for any cylinder \(C\) of \(\Sigma\), \[ \lim_{\beta\to+\infty} \frac1\beta \log\mu_\beta(C)=- \inf_{x\in C}I(x), \] where \[ I(x)= \sum_{n\geq 0} (V\circ \sigma-V-(A-m))\circ \sigma^n(x), \quad m= \int A\,d\mu_{\max}, \] where \(V(x)\) is any strict subaction of \(A\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F10 Large deviations
Full Text: DOI

References:

[1] Anantharaman N., Erg. Th. Dyn. Syst. 23 pp 353–
[2] Anantharaman N., J. Euro. Math. Soc. 6 pp 207–
[3] Boush T., Ann. Inst. Henri Poincaré, Prob. Statist. 36 pp 459–
[4] DOI: 10.1007/s002220100194 · Zbl 1079.37505 · doi:10.1007/s002220100194
[5] Bowen R., Lecture Notes in Mathematics 470, in: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (1975) · doi:10.1007/BFb0081279
[6] DOI: 10.1088/0951-7715/16/2/303 · Zbl 1034.37007 · doi:10.1088/0951-7715/16/2/303
[7] Contreras G., Erg. Th. Dyn. Syst. 21 pp 1379–
[8] Dembo A., Large Deviations Techniques (1993) · Zbl 0793.60030
[9] DOI: 10.1017/S0143385704000148 · Zbl 1065.46049 · doi:10.1017/S0143385704000148
[10] DOI: 10.1007/BF01048183 · Zbl 1101.82314 · doi:10.1007/BF01048183
[11] DOI: 10.1515/9783110850147 · Zbl 0657.60122 · doi:10.1515/9783110850147
[12] DOI: 10.1007/BF02097701 · Zbl 0711.58009 · doi:10.1007/BF02097701
[13] DOI: 10.1090/S0002-9947-01-02706-4 · Zbl 0977.37004 · doi:10.1090/S0002-9947-01-02706-4
[14] DOI: 10.1070/IM1972v006n06ABEH001919 · Zbl 0273.58013 · doi:10.1070/IM1972v006n06ABEH001919
[15] Lopes A. O., Asterisque 287 pp 135–
[16] DOI: 10.1017/S0143385704000732 · Zbl 1078.37021 · doi:10.1017/S0143385704000732
[17] Lopes A. O., Ann. Inst. Henri Poincaré, Anal Nonlin.
[18] Orey S., Seminar on Stochastic Processes 12 pp 195– (1985)
[19] Parry W., Asterisque 187 pp 1–
[20] DOI: 10.1080/14689360410001658990 · Zbl 1057.37023 · doi:10.1080/14689360410001658990
[21] DOI: 10.1214/aoms/1177692723 · Zbl 0238.60093 · doi:10.1214/aoms/1177692723
[22] DOI: 10.1007/978-1-4613-8514-1 · doi:10.1007/978-1-4613-8514-1
[23] DOI: 10.1088/0951-7715/12/4/325 · Zbl 0951.37006 · doi:10.1088/0951-7715/12/4/325
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.