×

Rotation, entropy, and equilibrium states. (English) Zbl 0977.37004

Suppose that \(X\) is a compact metric space, that \(T:X \rightarrow X\) is continuous, and that \(f\) is a continuous map from \(X\) into some Euclidean space. The corresponding generalized rotation set is the convex subset of Euclidean space consisting of all integrals of \(f\) with respect to \(T\)-invariant Borel probability measures. Properties of this set are described, usually under the assumption that the map assigning an invariant measure its entropy is upper semicontinuous. Applications to subshifts of finite type are developed. Given \(\rho\) in the rotation set, \(H(\rho)\) is defined to be the supremum of the entropies of all invariant measures \(\mu\) such that \(\int f d\mu = \rho\). This is compared with the directional entropy \(\mathcal{H}(\rho)\) recently studied by W. Geller and M. Misiurewicz [ibid. 351, 2927-2948 (1999; Zbl 0918.54019)]. It is always the case that \({\mathcal H}\leq H\); for \((X,T)\) a mixing subshift of finite type and \(f\) of summable variation, if the rotation set is strictly convex then \({\mathcal H}=H\). Without strict convexity, \(\mathcal{H}\) and \(H\) can differ only at non-exposed boundary points of the rotation set. Examples are given to show that the two either may or may not actually differ at such points.

MSC:

37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
54H20 Topological dynamics (MSC2010)
28D20 Entropy and other invariants
37C45 Dimension theory of smooth dynamical systems
37B40 Topological entropy

Citations:

Zbl 0918.54019
Full Text: DOI

References:

[1] S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states, Phys. D 8 (1983), no. 3, 381 – 422. · Zbl 1237.37059 · doi:10.1016/0167-2789(83)90233-6
[2] Martine Babillot and François Ledrappier, Lalley’s theorem on periodic orbits of hyperbolic flows, Ergodic Theory Dynam. Systems 18 (1998), no. 1, 17 – 39. · Zbl 0915.58074 · doi:10.1017/S0143385798100330
[3] V. Bangert, Mather sets for twist maps and geodesics on tori, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp. 1 – 56. · Zbl 0664.53021
[4] Victor Bangert, Minimal geodesics, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 263 – 286. · Zbl 0676.53055 · doi:10.1017/S014338570000554X
[5] Luis Barreira, Yakov Pesin, and Jörg Schmeling, On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity, Chaos 7 (1997), no. 1, 27 – 38. · Zbl 0933.37002 · doi:10.1063/1.166232
[6] Luis Barreira and Jörg Schmeling, Invariant sets with zero measure and full Hausdorff dimension, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 114 – 118. · Zbl 0887.58042
[7] L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, IST Preprint 14/97, 1997. · Zbl 0988.37029
[8] A. M. Blokh, Functional rotation numbers for one-dimensional maps, Trans. Amer. Math. Soc. 347 (1995), no. 2, 499 – 513. · Zbl 0820.54018
[9] T. Bousch, Le poisson n’a pas d’arêtes, Ann. I. H. P. (Prob.), 36 (2000), 489-508.
[10] Maury Bramson and Steven Kalikow, Nonuniqueness in \?-functions, Israel J. Math. 84 (1993), no. 1-2, 153 – 160. · Zbl 0786.60043 · doi:10.1007/BF02761697
[11] Zaqueu Coelho and Anthony N. Quas, Criteria for \overline\?-continuity, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3257 – 3268. · Zbl 0907.28013
[12] Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. · Zbl 0328.28008
[13] Tomasz Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 (1991), no. 2-3, 241 – 256. · Zbl 0746.58047 · doi:10.1007/BF02775789
[14] Ai Hua Fan and De Jun Feng, Analyse multifractale de la récurrence sur l’espace symbolique, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 7, 629 – 632 (French, with English and French summaries). · Zbl 1040.37501 · doi:10.1016/S0764-4442(99)80091-3
[15] William Geller and Michał Misiurewicz, Rotation and entropy, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2927 – 2948. · Zbl 0918.54019
[16] E. Glasner and B. Weiss, Kazhdan’s property T and the geometry of the collection of invariant measures, Geom. Funct. Anal. 7 (1997), no. 5, 917 – 935. · Zbl 0899.22006 · doi:10.1007/s000390050030
[17] Christian Grillenberger, Constructions of strictly ergodic systems. I. Given entropy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 323 – 334. · Zbl 0253.28004 · doi:10.1007/BF00537161
[18] Branko Grünbaum, Convex polytopes, With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. · Zbl 0152.20602
[19] Franz Hofbauer, Examples for the nonuniqueness of the equilibrium state, Trans. Amer. Math. Soc. 228 (1977), no. 223 – 241.. · Zbl 0355.28010
[20] O. Jenkinson, Conjugacy rigidity, cohomological triviality, and barycentres of invariant measures, Ph.D. thesis, Warwick University, 1996, http://www.maths.qmw.ac.uk/ omj
[21] O. Jenkinson, Geometric barycentres of invariant measures for circle maps, Ergod. Th. Dyn. Sys., 21 (2000), 511-532. · Zbl 1096.37500
[22] O. Jenkinson, Frequency-locking on the boundary of the barycentre set, Experimental Mathematics 9 (2000), 309-317. CMP 2000:17 · Zbl 1106.37303
[23] Gerhard Keller, Equilibrium states in ergodic theory, London Mathematical Society Student Texts, vol. 42, Cambridge University Press, Cambridge, 1998. · Zbl 0896.28006
[24] Seung-hwan Kim, R. S. MacKay, and J. Guckenheimer, Resonance regions for families of torus maps, Nonlinearity 2 (1989), no. 3, 391 – 404. · Zbl 0678.58034
[25] Jaroslaw Kwapisz, Every convex polygon with rational vertices is a rotation set, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 333 – 339. · Zbl 0774.58022 · doi:10.1017/S0143385700006787
[26] Jaroslaw Kwapisz, A toral diffeomorphism with a nonpolygonal rotation set, Nonlinearity 8 (1995), no. 4, 461 – 476. · Zbl 0912.58018
[27] J. Lindenstrauss, G. Olsen, and Y. Sternfeld, The Poulsen simplex, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 1, vi, 91 – 114 (English, with French summary). Wolfgang Lusky, A note on the paper: ”The Poulsen simplex” (Ann. Inst. Fourier (Grenoble) 28 (1978), no. 1, 91 – 114) by J. Lindenstrauss, G. Olsen and Y. Sternfeld, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 2, vii, 233 – 243 (English, with French summary).
[28] Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. · Zbl 1106.37301
[29] A. N. Livšic, Certain properties of the homology of \?-systems, Mat. Zametki 10 (1971), 555 – 564 (Russian).
[30] Greg McShane and Igor Rivin, Simple curves on hyperbolic tori, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 12, 1523 – 1528 (English, with English and French summaries). · Zbl 0835.53050
[31] Greg McShane and Igor Rivin, A norm on homology of surfaces and counting simple geodesics, Internat. Math. Res. Notices 2 (1995), 61 – 69. · Zbl 0828.30023 · doi:10.1155/S1073792895000055
[32] Ricardo Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity 5 (1992), no. 3, 623 – 638. · Zbl 0799.58030
[33] Ricardo Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity 9 (1996), no. 2, 273 – 310. · Zbl 0886.58037 · doi:10.1088/0951-7715/9/2/002
[34] Brian Marcus and Selim Tuncel, The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains, Ergodic Theory Dynam. Systems 11 (1991), no. 1, 129 – 180. · Zbl 0725.60071 · doi:10.1017/S0143385700006052
[35] D. Massart, Normes stables des surfaces, Ph.D. Thesis, ENS Lyon, 1996.
[36] D. Massart, Stable norms of surfaces: local structure of the unit ball of rational directions, Geom. Funct. Anal. 7 (1997), no. 6, 996 – 1010. · Zbl 0903.58001 · doi:10.1007/s000390050034
[37] John N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology 21 (1982), no. 4, 457 – 467. · Zbl 0506.58032 · doi:10.1016/0040-9383(82)90023-4
[38] John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), no. 2, 169 – 207. · Zbl 0696.58027 · doi:10.1007/BF02571383
[39] S. Newhouse, Continuity properties of entropy, Ann. of Math. (2), 129 (1989), 215-235. · Zbl 0676.58039
[40] S. Newhouse, J. Palis, F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Haut. Études Sci. Publ. Math. 57 (1983), 5-71. · Zbl 0518.58031
[41] William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55 – 66. · Zbl 0127.35301
[42] William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). · Zbl 0726.58003
[43] William Parry and Selim Tuncel, On the classification of Markov chains by finite equivalence, Ergodic Theory Dynamical Systems 1 (1981), no. 3, 303 – 335 (1982). · Zbl 0485.60063
[44] Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications. · Zbl 0895.58033
[45] Ya. B. Pesin and B. S. Pitskel\(^{\prime}\), Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 50 – 63, 96 (Russian, with English summary). · Zbl 0567.54027
[46] H. Poincaré, Sur les courbes définies par les équations différentielles, \OEuvres Complètes, tome 1, Gauthier-Villars, Paris, 1952, 137-158.
[47] R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original; Princeton Paperbacks. · Zbl 0932.90001
[48] David Ruelle, Statistical mechanics on a compact set with \?^{\?} action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237 – 251. · Zbl 0278.28012
[49] David Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. · Zbl 0401.28016
[50] S. Schwartzman, Asymptotic cycles, Ann. of Math. (2) 66 (1957), 270-284. · Zbl 0207.22603
[51] Ya. B. Pesin and Ya. G. Sinaĭ, Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 417 – 438 (1983). · Zbl 0519.58035 · doi:10.1017/S014338570000170X
[52] F. Takens and E. Verbitski, On the variational principle for the topological entropy of certain non-compact sets, preprint, 1999, University of Groningen. · Zbl 0955.37002
[53] Peter Walters, Ruelle’s operator theorem and \?-measures, Trans. Amer. Math. Soc. 214 (1975), 375 – 387. · Zbl 0331.28013
[54] Peter Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1975), no. 4, 937 – 971. · Zbl 0318.28007 · doi:10.2307/2373682
[55] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. · Zbl 0475.28009
[56] Peter Walters, Differentiability properties of the pressure of a continuous transformation on a compact metric space, J. London Math. Soc. (2) 46 (1992), no. 3, 471 – 481. · Zbl 0805.54023 · doi:10.1112/jlms/s2-46.3.471
[57] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. · Zbl 0516.58001
[58] Susan Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 1, 95 – 107. · Zbl 0584.28007 · doi:10.1007/BF00534085
[59] Krystyna Ziemian, Rotation sets for subshifts of finite type, Fund. Math. 146 (1995), no. 2, 189 – 201. · Zbl 0821.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.