×

Classification of Einstein-Kähler toric Fano fourfolds. (English) Zbl 0838.32008

Let \(M\) be a compact connected \(n\)-dimensional complex manifold, \(L\) a holomorphic line bundle over \(M\), \(p_i : M \times M \to M\) \(i = 1,2\) the natural projections. Put \(\widehat L = p_1^* L \otimes p^*_2 L^{-1}\) and consider the holomorphic vector bundle \(E(M, L) : = 1_{M \times M} \oplus 1_{M \times M} \otimes \widehat L\), \(1_{M \times M} : = M \times M \times \mathbb{C}\). Let \(\mathbb{P} (E(M,L))\) be the \(\mathbb{P}^2 (\mathbb{C})\)-bundle over \(M \times M\) associated to \(E(M,L)\). \(\mathbb{P} (E(M,L))\) has three natural cross-sections \(\Sigma_1, \Sigma_2, \Sigma_3\) corresponding to the three direct summands \(\{0\} \oplus \{0\} \oplus \widehat L\), \(\{0\} \oplus 1_{M \times M} \oplus \{0\}\), \(1_{M \times M} \oplus \{0\} \oplus \{0\}\). Blowing up \(\Sigma_1, \Sigma_2, \Sigma_3\) we get a complex manifold \({\mathfrak X} (M,L)\). — From now on \(M\) is a simply connected homogeneous space with a Kähler metric. A classical result states that \(M \simeq G/U\), where \(G\) is a simply connected complex semisimple Lie group and \(U\) is one of its parabolic subgroups. It follows easily that if \(L\) is a holomorphic line bundle over \(G/V\), \(G\) acts naturally on \(L\) inducing a \((G \times G)\)-action on \({\mathfrak X} (G/U,L)\). The author proves that the complex manifold \({\mathfrak X} (G/U,L)\) admits an Einstein-Kähler metric provided its first Chern class is positive.
Let now \(H\) be the hyperplane line bundle over \(\mathbb{P}^n (\mathbb{C})\). From the previous result follows that the toric Fano \((2n + 2)\)-fold \({\mathfrak X} (\mathbb{P}^n (\mathbb{C}), H^m)\), \(m \leq n\) admits an Einstein-Kähler metric, and in particular this allows to complete the classification of the toric Fano fourfolds given by the author in a previous paper.

MSC:

32Q20 Kähler-Einstein manifolds
32J18 Compact complex \(n\)-folds
14J45 Fano varieties
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
Full Text: DOI

References:

[1] V. V. BATYREV, On the classification of toric Fano 4-folds, · Zbl 0929.14024 · doi:10.1007/BF02367245
[2] A. FUTAKI, An obstruction totheexistence of Kahler Einsteinmetrics, Invent. Math. 73(1983), 437^43 · Zbl 0506.53030 · doi:10.1007/BF01388438
[3] M. ISE, Some properties ofcomplex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1962), 217-252. · Zbl 0108.36304
[4] T. MABUCHI, Einstein-Kahler forms, Futaki invariants and convex geometry on toric Fano varieties, Osaka J. Math. 24 (1987), 705-737. · Zbl 0661.53032
[5] A. M. NADEL, Multiplier ideal sheaves and Kahler-Einstein metrics of positive scalar curvature, Ann. o Math. 132 (1990), 549-596. JSTOR: · Zbl 0731.53063 · doi:10.2307/1971429
[6] Y. NAKAGAWA, Einstein-Kahler toric Fano fourfolds, Tohoku Math. J. 45 (1993), 297-310 · Zbl 0778.53040 · doi:10.2748/tmj/1178225923
[7] T. ODA, ”Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Ergebnisse der Math. (3) 15, Springer-Verlag, Heidelberg, 1988. · Zbl 0628.52002
[8] Y. SAKANE, Example of compact Einstein Kahler manifolds with positive Ricci tensor, Osaka J. Math 23 (1986), 585-616. · Zbl 0636.53068
[9] Y. -T. Siu, Noether-Lasker decomposition ofcoherent analytic subsheaves, Trans. Amer. Math. Soc. 13 (1969), 375-385. · Zbl 0175.37403 · doi:10.2307/1995021
[10] Y. -T. Siu, The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundl and a suitable finite symmetry group, Ann. of Math. 127 (1988), 585-627. JSTOR: · Zbl 0651.53035 · doi:10.2307/2007006
[11] G. TIAN AND S. -T. YAU, Kahler-Einstein metrics on complex surfaces with C0, Commun. Math Phys. 112(1987), 175-203. · Zbl 0631.53052 · doi:10.1007/BF01217685
[12] H. -C. WANG, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32 JSTOR: · Zbl 0055.16603 · doi:10.2307/2372397
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.