×

The finite section method and problems in frame theory. (English) Zbl 1078.42024

The finite section method applies for approximation of frame operators and their inverses. The paper under review presents a computable refinement of the finite section method in the two above mentioned cases. This is achieved by restricting the attention to finite matrices. Special attention is given to frames which are polynomially or exponentially localized with respect to some orthonormal basis. The rates of approximation for these cases are given. Several applications are provided.

MSC:

42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] Aldroubi, A.; Gröchenig, K., Non-uniform sampling in shift invariant spaces, SIAM Rev., 43, 4, 585-620 (2001) · Zbl 0995.42022
[2] Baskakov, A. G., Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen., 24, 3, 64-65 (1990) · Zbl 0728.47021
[3] Casazza, P. G.; Christensen, O., Approximation of the inverse frame operator and applications to Gabor frames, J. Approx. Theory, 103, 2, 338-356 (2000) · Zbl 0951.46008
[4] Christensen, O., An Introduction to Frames and Riesz Bases (2003), Birkhäuser: Birkhäuser Boston · Zbl 1017.42022
[5] Christensen, O.; Strohmer, T., Methods for approximation of the inverse (Gabor) frame operator, (Feichtinger, H. G.; Strohmer, T., Advances in Gabor Analysis (2003), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 171-195 · Zbl 1036.42029
[6] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1992.; I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1992. · Zbl 0776.42018
[7] Gardner, L. T., Square roots in Banach algebras, Proc. Amer. Math. Soc., 17, 132-134 (1966) · Zbl 0143.15701
[8] Gröchenig, K., Localization of frames, Banach frames and the invertibilty of the frame operator, 2002, J. Four. Anal. Appl., 10, 2, 105-132 (2004) · Zbl 1055.42018
[9] Gröchenig, K., Localized frames are finite unions of Riesz sequences, Adv. Comp. Math., 18, 149-157 (2003) · Zbl 1019.42019
[10] Hagen, R.; Roch, S.; Silbermann, B., \(C^*\)-algebras and numerical analysis, (Monographs and Textbooks in Pure and Applied Mathematics, vol. 236 (2001), Marcel Dekker Inc.: Marcel Dekker Inc. New York) · Zbl 0902.65087
[11] Jaffard, S., Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré Anal. Non Lineaire, 7, 5, 461-476 (1990) · Zbl 0722.15004
[12] Reed, M.; Simon, B., Methods of Modern Mathematical Physics (1978), Academic Press Inc.: Academic Press Inc. San Diego, CA · Zbl 0401.47001
[13] Strohmer, T., Rates of convergence for the approximation of dual shift-invariant systems in \(\ell^2(Z)\), J. Four. Anal. Appl., 5, 6, 599-615 (2000) · Zbl 0981.42020
[14] Strohmer, T., Approximation of dual Gabor frames, with applications to wireless communications, Appl. Comp. Harm. Anal., 11, 2, 243-262 (2001) · Zbl 0986.42018
[15] Young, R. M., An introduction to Nonharmonic Fourier Series (2001), Academic Press Inc.: Academic Press Inc. San Diego, CA · Zbl 0981.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.