×

A density theorem on automorphic \(L\)-functions and some applications. (English) Zbl 1078.11032

Let \(H_k\) be the set of normalized weight-\(k\) Hecke eigenforms for \(\text{SL}_2(\mathbb{Z})\), and for \(f\in H_k\) let \(N(\alpha, T, \text{sym}^m f)\) be the zero counting function for the \(L\)-series of \(\text{sym}^m f\). Then for \(1\leq m\leq 4\) and any \(\varepsilon>0\) it is shown that \[ \sum_{f\in H_k} N(\alpha,T,\text{sym}^mf)\ll_\varepsilon T^2 k^{29(1- \alpha)+\varepsilon}. \] In fact slightly sharper bounds are proven.) Thus for “almost all” \(f\in H_k\) one has \(L(s,\text{sym}^m f)\neq 0\) for \(\sigma\geq {31\over 32}\) and \(|t|\leq k^{1/32}\). For such \(f\), and for \(m\leq 4\), it is shown further that \[ L(1, \text{sym}^m f)\ll (\log\log k)^{A_m},\quad L(1, \text{sym}^m f)= \Omega((\log\log k)^{A_m}) \] and \[ L(1, \text{sym}^m f)^{-1}\ll (\log\log k)^{B_m},\quad L(1, \text{sym}^m f)^{-1}= \Omega((\log\log k)^{B_m}) \] for explicitly given exponents \(A_m\), \(B_m\). The implied constants are investigated, in analogy with the well known results for \(\zeta(1+ it)\).
Finally, it is shown that there are forms \(f_+\), \(f_-\), \(f_0\in H_k\) for which there are many primes \(p\leq(\log k)^A\) for which the Fourier coefficients \(\lambda_f(p)\) are nearly 2; or nearly \(-2\); or nearly 0, respectively.
The proofs use standard techniques extended to automorphic symmetric power \(L\)-functions, together with a large sieve inequality for the coefficients \(\lambda_{\text{sym}^m f}(l)\) as \(l\) varies.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11M41 Other Dirichlet series and zeta functions
Full Text: DOI

References:

[1] J. Cogdell and P. Michel, On the complex moments of symmetric power \?-functions at \?=1, Int. Math. Res. Not. 31 (2004), 1561 – 1617. · Zbl 1093.11032 · doi:10.1155/S1073792804132455
[2] Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of \?\?(2) and \?\?(3), Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471 – 542. · Zbl 0406.10022
[3] Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), no. 1, 161 – 181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. · Zbl 0814.11032 · doi:10.2307/2118543
[4] Andrew Granville and K. Soundararajan, Large character sums, J. Amer. Math. Soc. 14 (2001), no. 2, 365 – 397. · Zbl 0983.11053
[5] L. Habsieger & E. Royer, \(L\)-functions of automorphic forms and combinatorics: Dyck paths, Ann. Inst. Fourier (Grenoble), to appear. · Zbl 1131.11340
[6] Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), no. 1, 161 – 181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. · Zbl 0814.11032 · doi:10.2307/2118543
[7] Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. · Zbl 0905.11023
[8] Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak, Low lying zeros of families of \?-functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55 – 131 (2001). · Zbl 1012.11041
[9] Henry H. Kim, Functoriality for the exterior square of \?\?\(_{4}\) and the symmetric fourth of \?\?\(_{2}\), J. Amer. Math. Soc. 16 (2003), no. 1, 139 – 183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. · Zbl 1018.11024
[10] Henry H. Kim and Freydoon Shahidi, Functorial products for \?\?\(_{2}\)\times \?\?\(_{3}\) and the symmetric cube for \?\?\(_{2}\), Ann. of Math. (2) 155 (2002), no. 3, 837 – 893. With an appendix by Colin J. Bushnell and Guy Henniart. · Zbl 1040.11036 · doi:10.2307/3062134
[11] Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), no. 1, 177 – 197. · Zbl 1074.11027 · doi:10.1215/S0012-9074-02-11215-0
[12] A. W. Knapp, Local Langlands correspondence: the Archimedean case, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 393 – 410. · Zbl 0811.11071
[13] E. Kowalski and P. Michel, Zeros of families of automorphic \?-functions close to 1, Pacific J. Math. 207 (2002), no. 2, 411 – 431. · Zbl 1129.11316 · doi:10.2140/pjm.2002.207.411
[14] D. H. Lehmer, Some functions of Ramanujan, Math. Student 27 (1959), 105 – 116. · Zbl 0218.10006
[15] Wenzhi Luo, Values of symmetric square \?-functions at 1, J. Reine Angew. Math. 506 (1999), 215 – 235. · Zbl 0969.11018 · doi:10.1515/crll.1999.007
[16] Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. · Zbl 0216.03501
[17] R. A. Rankin, An \Omega -result for the coefficients of cusp forms, Math. Ann. 203 (1973), 239 – 250. · Zbl 0254.10021 · doi:10.1007/BF01629259
[18] Emmanuel Royer, Statistique de la variable aléatoire \?(\?\?\?²\?,1), Math. Ann. 321 (2001), no. 3, 667 – 687 (French, with English and French summaries). · Zbl 1006.11023 · doi:10.1007/s002080100244
[19] Emmanuel Royer, Interprétation combinatoire des moments négatifs des valeurs de fonctions \? au bord de la bande critique, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 4, 601 – 620 (French, with English and French summaries). · Zbl 1050.11055 · doi:10.1016/S0012-9593(03)00024-7
[20] E. Royer & J. Wu, Taille des valeurs de fonctions \(L\) de carrés symétriques au bord de la bande critique, Revista Matemática Iberoamericana 21 (2005), 263-312.
[21] E. Royer & J. Wu, Central values, values at the edge of the critical strip of symmetric power \(L\)-functions and Hecke eigenvalues, preprint. · Zbl 1147.11027
[22] Zeév Rudnick and Peter Sarnak, Zeros of principal \?-functions and random matrix theory, Duke Math. J. 81 (1996), no. 2, 269 – 322. A celebration of John F. Nash, Jr. · Zbl 0866.11050 · doi:10.1215/S0012-7094-96-08115-6
[23] Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323 – 401 (French). · Zbl 0496.12011
[24] Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke \?_{\?}, J. Amer. Math. Soc. 10 (1997), no. 1, 75 – 102 (French). · Zbl 0871.11032
[25] Gérald Tenenbaum and Jie Wu, Moyennes de certaines fonctions multiplicatives sur les entiers friables, J. Reine Angew. Math. 564 (2003), 119 – 166 (French, with English summary). · Zbl 1195.11132 · doi:10.1515/crll.2003.087
[26] E. C. Titchmarsh, Han-shu lun, Translated from the English by Wu Chin, Science Press, Peking, 1964 (Chinese).
[27] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. · Zbl 0601.10026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.