×

The 8V CSOS model and the \(\text{sl}_2\) loop algebra symmetry of the six-vertex model at roots of unity. (English) Zbl 1073.82535

Summary: We review an algebraic method for constructing degenerate eigenvectors of the transfer matrix of the eight-vertex cyclic solid-on-solid lattice model (8V CSOS model), where the degeneracy increases exponentially with respect to the system size. We consider the elliptic quantum group \(E_{\tau,\eta}(\text{sl}2)\) at the discrete coupling constants: \(2N\;\eta = m_1 + im_2 \tau\), where \(N\), \(m_1\) and \(m_2\) are integers. Then we show that degenerate eigenvectors of the transfer matrix of the six-vertex model at roots of unity in the sector \(S^Z \equiv 0\;(\mod N\)) are derived from those of the 8V CSOS model, through the trigonometric limit. They are associated with the complete N strings. From the result we see that the dimension of a given degenerate eigenspace in the sector \(S^Z \equiv 0\;(\mod N\)) of the six-vertex model at \(N\)th roots of unity is given by \(2^{2S^Z_{max}/N}\), where \(S^Z_{max}\) is the maximal value of the total spin operator \(S^Z\) in the degenerate eigenspace.

MSC:

82B23 Exactly solvable models; Bethe ansatz
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] DOI: 10.1023/A:1004894701900 · Zbl 0990.82008 · doi:10.1023/A:1004894701900
[2] DOI: 10.1023/A:1010380116927 · Zbl 1019.82003 · doi:10.1023/A:1010380116927
[3] DOI: 10.1023/A:1010372504158 · Zbl 1034.82007 · doi:10.1023/A:1010372504158
[4] DOI: 10.1143/PTP.48.2187 · doi:10.1143/PTP.48.2187
[5] DOI: 10.1088/0305-4470/30/4/022 · Zbl 1001.82516 · doi:10.1088/0305-4470/30/4/022
[6] DOI: 10.1016/S0378-4371(00)00450-7 · doi:10.1016/S0378-4371(00)00450-7
[7] DOI: 10.1016/0003-4916(72)90335-1 · Zbl 0236.60070 · doi:10.1016/0003-4916(72)90335-1
[8] DOI: 10.1016/0003-4916(73)90439-9 · Zbl 1092.82511 · doi:10.1016/0003-4916(73)90439-9
[9] DOI: 10.1103/PhysRevLett.60.1347 · doi:10.1103/PhysRevLett.60.1347
[10] DOI: 10.1007/BF01019732 · Zbl 1084.82520 · doi:10.1007/BF01019732
[11] DOI: 10.1143/JPSJ.57.1173 · Zbl 0719.57006 · doi:10.1143/JPSJ.57.1173
[12] DOI: 10.1007/BF01014383 · Zbl 0589.60093 · doi:10.1007/BF01014383
[13] DOI: 10.1016/0550-3213(90)90122-T · doi:10.1016/0550-3213(90)90122-T
[14] DOI: 10.1016/0370-2693(96)00225-0 · Zbl 0894.17008 · doi:10.1016/0370-2693(96)00225-0
[15] DOI: 10.1007/BF01238562 · Zbl 0977.17012 · doi:10.1007/BF01238562
[16] DOI: 10.1070/RM1979v034n05ABEH003909 · doi:10.1070/RM1979v034n05ABEH003909
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.